scispace - formally typeset
Search or ask a question
Author

A Powell

Bio: A Powell is an academic researcher from University of Southampton. The author has contributed to research in topics: Jet (fluid) & Noise (radio). The author has an hindex of 1, co-authored 1 publications receiving 524 citations.

Papers
More filters
Journal ArticleDOI
01 Dec 1953
TL;DR: In this paper, the authors examined the noise in two-dimensional flow with the aid of a dynamic Schlieren apparatus, verifying the suggested mechanism and showing the similarity to axially symmetric flow where discontinuities in frequency, partly analogous to edge tones, occur.
Abstract: The character of jet noise undergoes a marked change above choking, the noise due to turbulent mixing being dominated by a powerful whistle or screech whose wavelength is related to the regular shock wave spacing. The mechanism in two-dimensional flow is further examined (by the aid of a dynamic Schlieren apparatus), verifying the suggested mechanism and showing the similarity to that in axially symmetric flow where discontinuities in frequency, partly analogous to edge tones, occur. The resultant sound emitted as the periodic eddy system traverses the regular shock wave pattern is highly directional, producing a powerful beam at doubled frequency normal to the jet and an intense beam at eddy frequency in the upstream direction adjacent to the jet, resulting in fluctuations in jet velocity direction at the orifice which initiate new stream disturbances. A gain criterion for the self-maintained cycle is given, enabling certain qualitative deductions concerning the intensity to be made, and use will be made of this in considering methods of reducing the noise level.

587 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of vortex generators at the nozzle exit on the evolution of a jet was investigated, and the results of an experimental investigation on the effect on the vortex generators were reported.
Abstract: The results of an experimental investigation on the effect of vortex generators, in the form of small tabs at the nozzle exit on the evolution of a jet, are reported in this paper. Primarily tabs of triangular shape are considered, and the effect is studied up to a jet Mach number of 1.8. Each tab is found to produce a dominant pair of counter‐rotating streamwise vortices having a sense of rotation opposite to that expected from the wrapping of the boundary layer. This results in an inward indentation of the mixing layer into the core of the jet. A triangular‐shaped tab with its apex leaning downstream, referred to as a delta tab, is found to be the most effective in producing such vortices, with a consequential large influence on the overall jet evolution. Two delta tabs, spaced 180° apart, completely bifurcate the jet. Four delta tabs stretch the mixing layer into four ‘‘fingers,’’ resulting in a significant increase in the jet mixing downstream. For six delta tabs the mixing layer distortion settles back to a three finger configuration through an interaction of the streamwise vortices. The tabs are found to be equally effective in jets with turbulent or laminar initial boundary layers. Two sources of streamwise vorticity are postulated for the flow under consideration. One is the upstream ‘‘pressure hill,’’ generated by the tab, which constitutes the main contributor of vorticity to the dominant pair. Another is due to vortex filaments shed from the sides of the tab and reoriented downstream by the mean shear of the mixing layer. Depending on the orientation of the tab, the latter source can produce a vortex pair having a sense of rotation opposite to that of the dominant pair. In the case of the delta tab, vorticity from the two sources add, explaining the strong effect in that configuration.

420 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived a scaling formula that the intensity of shock associated noise varies as (Mj2 − Md2)2 where Mj and Md are the fully expanded jet operating Mach number and nozzle design Mach number, respectively.

371 citations

Journal ArticleDOI

349 citations

Journal ArticleDOI
TL;DR: The effect of vortex generators, in the form of small tabs projecting normally into the flow at the nozzle exit, on the characteristics of an axisymmetric jet is investigated experimentally over the jet Mach number range of 0.3-1.81 as discussed by the authors.
Abstract: The effect of vortex generators, in the form of small tabs projecting normally into the flow at the nozzle exit, on the characteristics of an axisymmetric jet is investigated experimentally over the jet Mach number range of 0.3-1.81. The tabs eliminate screech noise from supersonic jets and alter the shock structure drastically. They distort the jet cross section and increase the jet spread rate significantly. The distortion produced is essentially the same at subsonic and underexpanded supersonic conditions. Thus, the underlying mechanism must be independent of compressibility effects. A tab with a height as small as 2 percent of the jet diameter, but larger than the efflux boundary-layer thickness, is found to produce a significant effect. Flow visualization reveals that each tab introduces an 'indentation' into the high speed side of the shear layer via the action of streamwise vortices. These vortices are inferred to be of the 'trailing vortex' type rather than of the 'necklace vortex' type. It is apparent that a substantial pressure differential must exist between the upstream and the downstream sides of the tab to effectively produce these trailing vortices. This explains why the tabs are ineffective in the overexpanded flow, as in that case an adverse pressure gradient exists near the nozzle exit which reduces the pressure differential produced by the tab.

346 citations