scispace - formally typeset
Search or ask a question
Author

A. Prasanna de Silva

Bio: A. Prasanna de Silva is an academic researcher from Queen's University Belfast. The author has contributed to research in topics: Photoinduced electron transfer & Logic gate. The author has an hindex of 58, co-authored 135 publications receiving 17301 citations. Previous affiliations of A. Prasanna de Silva include Queen's University & University of Colombo.


Papers
More filters
Journal ArticleDOI
TL;DR: The ideas and experimental results within 350 references are marshalled to illustrate the design bases and application potential of molecular luminescent sensing and switching devices that have appeared since the turn of the century as mentioned in this paper.

1,032 citations

Journal ArticleDOI
TL;DR: Molecular substrates can be viewed as computational devices that process physical or chemical 'inputs' to generate 'outputs' based on a set of logical operators, which aid chemical (especially intracellular) sensing, small object recognition and intelligent diagnostics.
Abstract: Molecular substrates can be viewed as computational devices that process physical or chemical 'inputs' to generate 'outputs' based on a set of logical operators. By recognizing this conceptual crossover between chemistry and computation, it can be argued that the success of life itself is founded on a much longer-term revolution in information handling when compared with the modern semiconductor computing industry. Many of the simpler logic operations can be identified within chemical reactions and phenomena, as well as being produced in specifically designed systems. Some degree of integration can also be arranged, leading, in some instances, to arithmetic processing. These molecular logic systems can also lend themselves to convenient reconfiguring. Their clearest application area is in the life sciences, where their small size is a distinct advantage over conventional semiconductor counterparts. Molecular logic designs aid chemical (especially intracellular) sensing, small object recognition and intelligent diagnostics.

759 citations

Journal ArticleDOI
TL;DR: Currently available approaches to molecular-scale logic gates are summarized and compared and integration of simple logic functions to produce more complex ones is discussed in terms of recent developments.
Abstract: Currently available approaches to molecular-scale logic gates are summarized and compared. These include: chemically-controlled fluorescent and transmittance-based switches concerned with small molecules, DNA oligonucleotides with fluorescence readout, oligonucleotide reactions with DNA-based catalysts, chemically-gated photochromics, reversibly denaturable proteins, molecular machines with optical and electronic signals, two-photon fluorophores and multichromophoric transient optical switches. The photochemical principles of electron and energy transfer are involved in several of these approaches. More complex molecular logic systems with reconfigurability and superposability provide contrasts with current semiconductor electronics. Integration of simple logic functions to produce more complex ones is also discussed in terms of recent developments.

563 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: This critical review has been tailored for a broad audience of chemists, biochemists and materials scientists; the basics of lanthanide photophysics are highlighted together with the synthetic strategies used to insert these ions into mono- and polymetallic molecular edifices.
Abstract: Lanthanide ions possess fascinating optical properties and their discovery, first industrial uses and present high technological applications are largely governed by their interaction with light. Lighting devices (economical luminescent lamps, light emitting diodes), television and computer displays, optical fibres, optical amplifiers, lasers, as well as responsive luminescent stains for biomedical analysis, medical diagnosis, and cell imaging rely heavily on lanthanide ions. This critical review has been tailored for a broad audience of chemists, biochemists and materials scientists; the basics of lanthanide photophysics are highlighted together with the synthetic strategies used to insert these ions into mono- and polymetallic molecular edifices. Recent advances in NIR-emitting materials, including liquid crystals, and in the control of luminescent properties in polymetallic assemblies are also presented. (210 references.)

3,242 citations