scispace - formally typeset
Search or ask a question
Author

A. S. Laxmiprasad

Bio: A. S. Laxmiprasad is an academic researcher from Indian Space Research Organisation. The author has contributed to research in topics: Laser ablation & Laser-induced breakdown spectroscopy. The author has an hindex of 4, co-authored 10 publications receiving 62 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A miniaturized in situ laser induced breakdown spectroscope-LIBS is one of the two lunar rover payloads to be flown in India's next lunar mission Chandrayaan-2, with an objective to carry-out a precise qualitative and quantitative elemental analyses of lunar regolith at the proximity of the landing region as discussed by the authors.

26 citations

Journal ArticleDOI
TL;DR: In this paper, a dual-wavelength (laser-induced breakdown spectroscopy LIBS) technique using a single laser system is proposed and demonstrated using a pulsed Nd3+ : YAG laser.
Abstract: In this paper, a novel method of the dual-wavelength (laser-induced breakdown spectroscopy LIBS) technique using a single laser system is proposed and demonstrated. Experiments are performed using a pulsed Nd3+ : YAG laser with a pair of 355–1064 nm and also with 532–1064 nm. The shorter wavelength laser is used for ablation and plasma formation, and the fundamental wavelength (1064 nm) is used for plasma re-excitation. The proposed dual-wavelength LIBS technique is used for lunar simulant samples under different ambient pressure conditions. Various characteristic parameters, such as the emission line-intensity enhancement, plasma temperature, lifetime and plasma area, are studied. Experimental studies clearly showed the emission line-intensity enhancement up to a factor of 3. Emission lifetime showed a longer sustained emission with an increase of up to 33% for the dual-wavelength approach. A theoretical simulation based on the hydrodynamic equations is also performed for dual-wavelength ablation and re-excitation. The estimated plasma temperature and ablation plume-front velocity clearly showed an increase in dual wavelength, which is in agreement with the experimental results.

15 citations

Journal ArticleDOI
TL;DR: In this article, a model is developed to describe the heating and subsequent melting, vaporization and ionization of a target material during LIBS process and an experimental approach of measuring spectral emission from the ablation plume using emission spectroscopy and estimating the plasma state, such as the ionization species, and average plasma temperature, is investigated.
Abstract: Laser Induced Breakdown Spectroscopy (LIBS) can be considered as a prominent technology for compositional analysis of materials in low-pressure space applications. In space applications, usually LIBS is conducted in a low-pressure environment and proper understanding of the plasma parameters is significant for any improvement in the system. A model is developed to describe the heating and subsequent melting, vaporization and ionization of a target material during LIBS process. A numerical model based on one-dimensional thermal conductivity equation is being used to simulate the target evaporation and a hydrodynamic model is used to simulate plume expansion. Further, an experimental approach of measuring spectral emission from the ablation plume using emission spectroscopy and estimating the plasma state, such as the ionization species, and average plasma temperature, is investigated. An important result of this work is that for different ambient conditions, laser ablation plume dynamics can be estimated.

14 citations

Journal ArticleDOI
TL;DR: The first LAP onboard operation was carried out during the cruise phase of MOM spacecraft journey to verify its functionality and all recorded on-board health parameters were satisfactory and end-to-end test results and evaluation matrix of LAP were satisfactory.
Abstract: The Lyman Alpha Photometer (LAP), developed for flight on the Mars Orbiter Mission (MOM) spacecraft in 2013, is primarily designed to measure deuterium to hydrogen abundance ratio of the Martian exosphere over a 6-month period from a 263 km × 71,358 km elliptical orbit around Mars. A set of ultrapure (99.999%) hydrogen and deuterium gas-filled cells comprising tungsten filaments, a 25 mm diameter collection lens and a solar-blind photomultiplier tube together with an 8 nm bandpass Lyman alpha filter are the principal electro-optical assemblies of the instrument. This article presents scientific objectives of LAP and its performance specifications along with details of instrument design. The ground characterization techniques to assess LAP operational performance are also presented. End-to-end test results and evaluation matrix of LAP were satisfactory, well within the desired specifications. The first LAP onboard operation was carried out during the cruise phase of MOM spacecraft journey to verify its functionality and all recorded on-board health parameters were satisfactory.

9 citations

Journal ArticleDOI
TL;DR: In this article, the system engineering and development aspects of the laser induced breakdown spectroscope (LIBS) instrument along with results from environmental tests are presented, and details on ground calibration techniques used to evaluate the instrument capability are also presented.
Abstract: Laser Induced Breakdown Spectroscope (LIBS) instrument flown in Chandrayaan-2 mission to the Moon, is one of the scientific instruments on the Pragyaan rover. It is primarily developed to carry out in situ investigations for the elemental composition study of lunar regolith and pebbles on the Moon surface in a previously unexplored high latitude area in the southern polar region. A pulsed laser source, a set of optical lenses and mirrors, an aberrationcorrected concave holographic grating and a linear detector, are the principal electro-optical accessories of the instrument. The developed LIBS is a lightweighted (~1.1 kg) and low power consuming (≤1.2 W) compact instrument. This paper presents the system engineering and development aspects of the LIBS instrument along with results from environmental tests. Performance evaluation of the instrument during endto- end testing is satisfactory and within desired specifications. Details on ground calibration techniques used to evaluate the instrument capability are also presented.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Compared to the conventional flame emission spectroscopy, LIBS atomizes only the small portion of the sample by the focused laser pulse, which makes a tiny spark on the sample, and capturing the instant light is a major skill to collect sufficient intensity of the emitting species.
Abstract: ■ CONTENTS General Information: Books, Reviews, and Conferences 640 Fundamentals 641 Interaction of Laser Beam with Matter 641 Factors Affecting Laser Ablation and LaserInduced Plasma Formation 642 Influence of Target on the Laser-Induced Plasmas 642 Influence of Laser Parameters on the LaserInduced Plasmas 643 Laser Wavelength (λ) 643 Laser Pulse Duration (τ) 643 Laser Pulse Energy (E) 645 Influence of Ambient Gas on the Laser-Induced Plasmas 645 LIBS Methods 647 Double Pulse LIBS 647 Femtosecond LIBS 651 Resonant LIBS 652 Ranging Approaches 652 Applications 654 Surface Inspection, Depth Profiling, and LIBS Imaging 654 Cultural Heritage 654 Industrial Analysis 655 Environmental Monitoring 656 Biomedical and Pharmaceutical Analysis 658 Security and Forensics 659 Analysis of Liquids and Submerged Solids 660 Space Exploration and Isotopic Analysis 662 Space Exploration 662 Isotopic Analysis 662 Conclusions and Future Outlook 663 Author Information 664 Corresponding Author 664 Notes 664 Biographies 664 Acknowledgments 664 References 664

847 citations

Journal ArticleDOI
TL;DR: The findings demonstrate the impact of rigorous feature selection in LIBS and also hint at the feasibility of using a discrete filter based detector thereby enabling a cheaper and compact system more amenable to field operations.
Abstract: Despite its intrinsic advantages, translation of laser induced breakdown spectroscopy for material identification has been often impeded by the lack of robustness of developed classification models, often due to the presence of spurious correlations. While a number of classifiers exhibiting high discriminatory power have been reported, efforts in establishing the subset of relevant spectral features that enable a fundamental interpretation of the segmentation capability and avoid the ‘curse of dimensionality’ have been lacking. Using LIBS data acquired from a set of secondary explosives, we investigate judicious feature selection approaches and architect two different chemometrics classifiers –based on feature selection through prerequisite knowledge of the sample composition and genetic algorithm, respectively. While the full spectral input results in classification rate of ca.92%, selection of only carbon to hydrogen spectral window results in near identical performance. Importantly, the genetic algorithm-derived classifier shows a statistically significant improvement to ca. 94% accuracy for prospective classification, even though the number of features used is an order of magnitude smaller. Our findings demonstrate the impact of rigorous feature selection in LIBS and also hint at the feasibility of using a discrete filter based detector thereby enabling a cheaper and compact system more amenable to field operations.

53 citations

Journal ArticleDOI
TL;DR: In this paper, laser-induced breakdown spectroscopy (LIBS) technique is used for concentration prediction of six elements of Mn, Si, Cu, Fe, Zn, and Mg in seven Al samples by two approaches of artificial neural network (ANN) and standard calibration curve.
Abstract: In this paper, laser-induced breakdown spectroscopy (LIBS) technique is used for concentration prediction of six elements of Mn, Si, Cu, Fe, Zn, and Mg in seven Al samples by two approaches of artificial neural network (ANN) and standard calibration curve. ANN is utilized as a new technique for determination and classification of various materials and elements in LIBS method. In this study, a few spectra of six aluminum standards with known concentrations are used for training of ANN. It should be noted that the mentioned network is not on trial and error basis, but it is a self-organized network. Calibration curve method, which is implemented in represented paper, determines certain relation between concentration and intensity. Then, the calibration curve and ANN methods obtained by six samples are used for prediction of the elements of the seventh standard sample in order to check the accuracy of these methods and make a comparison. In both approaches, a self-absorption correction is applied for high concentrations species and an improvement in prediction of two methods is seen. Results illustrate that at high concentrations except for Si, ANN shows a better prediction with a lower relative error compared to calibration curve approach after self-absorption correction. Primitive study without any self-absorption correction shows that ANN and calibration curve predictions with the best result are related to Fe with R 2 = 0.99 % having the minimum errors.

40 citations

Journal ArticleDOI
TL;DR: In this article, a study of Fe plasma using collinear dual-wavelength femtosecond double-pulse laser-induced breakdown spectroscopy (LIBS) with a fundamental wavelength (800 nm) and a second harmonic wavelength (400 nm) from Ti:sapphire laser is presented.
Abstract: In this paper, we propose and demonstrate a study of Fe plasma using collinear dual-wavelength femtosecond double-pulse laser-induced breakdown spectroscopy (LIBS) with a fundamental wavelength (800 nm) and a second harmonic wavelength (400 nm) from Ti:sapphire laser. By varying the time separation of the dual-wavelength femtosecond double-pulse, the experimental results clearly show the signal enhancement up to a factor of 10 and more than 10 times, in comparison with it at 0 ps time separation. The electron temperature and electron density are analyzed as the basic parameters of plasma properties, and they are respectively based on the theory of Boltzmann plot and Stark broadening. It proves that dual-wavelength femtosecond double-pulse LIBS is excellent for enhancing the emission intensity of the signal.

40 citations

Journal ArticleDOI
TL;DR: A miniaturized in situ laser induced breakdown spectroscope-LIBS is one of the two lunar rover payloads to be flown in India's next lunar mission Chandrayaan-2, with an objective to carry-out a precise qualitative and quantitative elemental analyses of lunar regolith at the proximity of the landing region as discussed by the authors.

26 citations