scispace - formally typeset
Search or ask a question
Author

A. Shubha

Bio: A. Shubha is an academic researcher from Siddaganga Institute of Technology. The author has contributed to research in topics: Dielectric & Polymer blend. The author has an hindex of 2, co-authored 3 publications receiving 23 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a poly(2-ethyl-2-oxazoline) is blended with polyvinylpyrrolidone (PVP) to improve the optical and electrical properties of the material.

25 citations

Journal ArticleDOI
TL;DR: In this paper, two bio-compatible polymer blends of poly(2-ethyl-2-oxazoline) [PEOX] and polyvinylpyrro-lidone [PVP] were prepared at various compositions (80:20, 60:40, 40:60, and 20:80).
Abstract: Bio-compatible polymer blends of poly(2-ethyl-2-oxazoline) [PEOX] and polyvinylpyrro-lidone [PVP] were prepared at various compositions (80:20, 60:40, 40:60, and 20:80 wt%). These polymer blends were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The thermal stability of the blends was evaluated by thermogravimetry. The kinetic parameters such as activation enthalpy, ∆H, activation entropy, ∆S, and free energy of activation, ∆G, were calculated using kinetic model given by Broido for all the blends. The thermal studies show that PEOX: PVP (20:80) blend has good thermal stability compared to other blends. The results show that thermal stability and decomposition temperature of PEOX was considerably improved by the addition of PVP. The electrical and dielectric properties of PEOX:PVP (80:20) blend were measured in the temperature range of 313 K - 353 K using an LCR meter for the frequency range 100 Hz - 8 MHz. The dielectric studies shows that dielectric constant, dielectric loss and electric modulus decreases with frequency and increases with temperature, whereas AC conductivity increases with frequency and temperature.

6 citations

Journal ArticleDOI
TL;DR: Graphene-based poly(2-ethyl-2-oxazoline) (PEOX) and polyvinylpyrrolidone (PVP) blend-matrix nanocomposites were prepared employing different weight percentages of graphene nanoplatelets as filler by ultrasonication assisted solution casting method as mentioned in this paper .

4 citations

Journal ArticleDOI
TL;DR: In this paper, a simple solution blending method at various graphene weight percentages was used to obtain the dielectric parameters of polyvinylpyrrolidone (PVP)-graphene nanocomposites.

1 citations


Cited by
More filters
Book ChapterDOI
22 Apr 2012
TL;DR: In this article, the electromagnetic spectrum in Figure 1 illustrates the many different types of electromagnetic radiation, including gamma rays (γ-rays), X-rays, ultraviolet (UV) radiation, visible light, infrared (IR), microwaves, and radio waves.
Abstract: Spectroscopy is the study of matter interacting with electromagnetic radiation (e.g., light). The electromagnetic spectrum in Figure 1 illustrates the many different types of electromagnetic radiation, including gamma rays (γ-rays), X-rays, ultraviolet (UV) radiation, visible light, infrared (IR) radiation, microwaves, and radio waves. The frequency (ν) and wavelength (λ) ranges associated with each form of radiant energy are also indicated in Figure 1.

849 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overall investigation of PPS polymer and PPS-based composites from synthesis and process to applications, focusing on the aspect of thermal behavior and mechanical properties.
Abstract: Poly (phenylene sulfide) (PPS) is one kind of high‐performance polymer with high thermal stability that can be used widely in different industrial domains. However, according to an investigation of the literature, few reviews have comprehensively focused on the continuous development of PPS applications in the past decade. To meet this demand, this paper provides an overall investigation of PPS polymer and PPS‐based composites from synthesis and process to applications. Briefly, this paper introduces PPS materials according to the following topics. First, the molecular weight distribution and morphology of PPS, as well as their reinforced parts, are introduced. Afterward, the topic is focused on the synthesis, process, and blending of PPS. In the next part, this paper investigates the key points regarding PPS as a high‐performance polymer, focusing on the aspect of thermal behavior and mechanical properties. Finally, PPS composite applications are emphasized and overviewed from a wide range of aspects.

53 citations

Journal ArticleDOI
TL;DR: These films were formulated with sodium fluorescein as a model drug and were evaluated for their potential application in ocular drug delivery both in vitro and in vivo; it was established that the films are biocompatible and mucoadhesive.

39 citations

Journal ArticleDOI
Abstract: There is a considerable demand for the development and application of polymer materials in the flexible electronic- and polymer-based electrolyte technologies. Chitosan (CS) and poly(2-ethyl-2-oxazoline) (POZ) materials were blended with different ratios to obtain CS:POZ blend films using a straightforward solution cast technique. The work was involved a range of characteristic techniques, such as impedance spectroscopy, X-ray diffraction (XRD), and optical microscopy. From the XRD spectra, an enhancement in the amorphous nature in CS:POZ blend films was revealed when compared to the pure state of CS. The enhancement was verified from the peak broadening in CS:POZ blend films in relative to the one in crystalline peaks of the CS polymer. The optical micrograph study was used to designate the amorphous and crystalline regions by assigning dark and brilliant phases, respectively. Upon increasing POZ concentration, the dielectric constant was found to increase up to ɛ′ = 6.48 (at 1 MHz) at 15 wt.% of POZ, and then a drop was observed beyond this amount. The relatively high dielectric constant and dielectric loss were found at elevated temperatures. The increase of POZ concentration up to 45 wt.% made the loss tangent to shift to the lower frequency side, which is related to increasing resistivity. The increases of dielectric constant and dielectric loss with temperature were attributed to the increase of polarisation. The loss tangent peaks were found to shift to the higher frequency side as temperature elevated. Obvious relaxation peaks were observed in the imaginary part of electric modulus, and no peaks were found in the dielectric loss spectra. The concentration dependent of M″ peaks was found to follow the same trend of loss tangent peaks versus POZ content. The relaxation process was studied in terms of electric modulus parameters.

36 citations

Journal ArticleDOI
TL;DR: In this article , a review of smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods.
Abstract: Innovations in nanomedicine has guided the improved outcomes for cancer diagnosis and therapy. However, frequent use of nanomaterials remains challenging due to specific limitations like non-targeted distribution causing low signal-to-noise ratio for diagnostics, complex fabrication, reduced-biocompatibility, decreased photostability, and systemic toxicity of nanomaterials within the body. Thus, better nanomaterial-systems with controlled physicochemical and biological properties, form the need of the hour. In this context, smart nanomaterials serve as promising solution, as they can be activated under specific exogenous or endogenous stimuli such as pH, temperature, enzymes, or a particular biological molecule. The properties of smart nanomaterials make them ideal candidates for various applications like biosensors, controlled drug release, and treatment of various diseases. Recently, smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods. In cancer therapy, the smart nanomaterials-system only activates in response to tumor microenvironment (TME) and remains in deactivated state in normal cells, which further reduces the side-effects and systemic toxicities. Thus, the present review aims to describe the stimulus-based classification of smart nanomaterials, tumor microenvironment-responsive behaviour, and their up-to-date applications in cancer theranostics. Besides, present review addresses the development of various smart nanomaterials and their advantages for diagnosing and treating cancer. Here, we also discuss about the drug targeting and sustained drug release from nanocarriers, and different types of nanomaterials which have been engineered for this intent. Additionally, the present challenges and prospects of nanomaterials in effective cancer diagnosis and therapeutics have been discussed.

33 citations