scispace - formally typeset
Search or ask a question
Author

A. Stogryn

Bio: A. Stogryn is an academic researcher. The author has contributed to research in topics: Conductivity & Dielectric. The author has an hindex of 1, co-authored 1 publications receiving 663 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the dielectric constant of saline water was represented by an equation of the Debye form and the parameters for the parameters were given as functions of the water temperature and salinity.
Abstract: The dielectric constant of saline water may be represented by an equation of the Debye form. Equations for the parameters in the Debye expression are given as functions of the water temperature and salinity.

715 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the microwave dielectric behavior of soil-water mixtures as a function of water content and soil textural composition for the 1.4-to 18-GHz region.
Abstract: This paper is the second in a series evaluating the microwave dielectric behavior of soil-water mixtures as a function of water content and soil textural composition. Part II draws upon the data presented in Part 1 [13] to develop appropriate empirical and theoretical dielectric mixing models for the 1.4-to 18-GHz region. A semiempirical mixing model based upon the index of refraction is presented, requiring only easily ascertained soil physical parameters such as volumetric moisture and soil textural composition as inputs. In addition, a theoretical model accounting explicitly for the presence of a hydration layer of bound water adjacent to hydrophilic soil particle surfaces is presented. A four-component dielectric mixing model treats the soil-water system as a host medium of dry soil solids containing randomly distributed and randomly oriented disc-shaped inclusions of bound water, bulk water, and air. The bulk water component is considered to be dependent upon frequency, temperature, and salinity. The soil solution is differentiated by means of a soil physical model into 1) a bound component and 2) a bulk soil solution. The performance of each model is evaluated as a function of soil moisture, soil texture, and frequency, using the dielectric measurements of five soils ranging from sandy loam to silty clay (as presented in Part I [13]) at frequencies between 1.4 and 18 GHz. The semiempirical mixing model yields an excellent fit to the measured data at frequencies above 4 GHz. At 1.

1,805 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theory underlying microwave dielectric heating and collates the data for a wide range of organic solvents which are commmonly used in microwave syntheses.
Abstract: Microwave dielectric heating is rapidly becoming an established procedure in synthetic chemistry. This review summarises the basic theory underlying microwave dielectric heating and collates the dielectric data for a wide range of organic solvents which are commmonly used in microwave syntheses. The loss tangents of the solvents, which may be related to the ability of the solvent to absorb energy in a microwave cavity, depend on the relaxation times of the molecules. These relaxation times depend critically on the nature of the functional groups and the volume of the molecule. Functional groups capable of hydrogenbonding have a particularly strong influence on the relaxation times. The relaxation times of solvents decrease as the temperature of the solvent is increased. Loss tangent data at different microwave frequencies are also presented and discussed.

1,160 citations

Journal ArticleDOI
TL;DR: The field-scale application of apparent soil electrical conductivity (EC"a) to agriculture has its origin in the measurement of soil salinity, which is an arid-zone problem associated with irrigated agricultural land and with areas having shallow water tables as mentioned in this paper.

861 citations

Journal ArticleDOI
TL;DR: In this article, the dielectric constant of sea water has been measured at S-band and L-band with a quoted uncertainty of tenths of a percent, and expressions are developed which will yield computations of brightness temperature having an error of no more than 0.3 K for an undisturbed sea at frequencies lower than X-band.
Abstract: The advent of precision microwave radiometry has placed a stringent requirement on the accuracy with which the dielectric constant of sea water must be known. To this end, measurements of the dielectric constant have been conducted at S -band and L -band with a quoted uncertainty of tenths of a percent. These and earlier results are critically examined, and expressions are developed which will yield computations of brightness temperature having an error of no more than 0.3 K for an undisturbed sea at frequencies lower than X -band. At the higher microwave and millimeter wave frequencies, the accuracy is in question because of uncertainties in the relaxation time and the dielectric constant at infinite frequency.

834 citations

Journal ArticleDOI
TL;DR: This review examines issues such as the effective frequency of the TDR measurement and waveform analysis in dispersive dielectrics, and the growing importance of both waveform simulation and inverse analysis of waveforms is highlighted.
Abstract: Substantial advances in the measurement of water content and bulk soil electrical conductivity (EC) using time domain reflectometry (TDR) have been made in the last two decades. The key to TDR's success is its ability to accurately measure the permittivity of a material and the fact that there is a good relationship between the permittivity of a material and its water content. A further advantage is the ability to estimate water content and measure bulk soil EC simultaneously using TDR. The aim of this review is to summarize and examine advances that have been made in terms of measuring permittivity and bulk EC. The review examines issues such as the effective frequency of the TDR measurement and waveform analysis in dispersive dielectrics. The growing importance of both waveform simulation and inverse analysis of waveforms is highlighted. Such methods hold great potential for obtaining far more information from TDR waveform analysis. Probe design is considered in some detail and practical guidance is given for probe construction. The importance of TDR measurement sampling volume is considered and the relative energy storage density is modeled for a range of probe designs. Tables are provided that compare some of the different aspects of commercial TDR equipment, and the units are discussed in terms of their performance and their advantages and disadvantages. It is hoped that the review will provide an informative guide to the more technical aspects of permittivity and EC measurement using TDR for the novice and expert alike.

753 citations