scispace - formally typeset
Search or ask a question
Author

A. Teke

Bio: A. Teke is an academic researcher from Balıkesir University. The author has contributed to research in topics: Heterojunction & Quantum well. The author has an hindex of 14, co-authored 33 publications receiving 10866 citations. Previous affiliations of A. Teke include Virginia Commonwealth University.

Papers
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: In this paper, the optical properties of a high quality bulk ZnO, thermally post treated in a forming gas environment are investigated by temperature dependent continuous wave and time-resolved photoluminescence (PL) measurements.
Abstract: The optical properties of a high quality bulk $\mathrm{ZnO}$, thermally post treated in a forming gas environment are investigated by temperature dependent continuous wave and time-resolved photoluminescence (PL) measurements. Several bound and free exciton transitions along with their first excited states have been observed at low temperatures, with the main neutral-donor-bound exciton peak at $3.3605\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$ having a linewidth of $0.7\phantom{\rule{0.3em}{0ex}}\mathrm{meV}$ and dominating the PL spectrum at $10\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. This bound exciton transition was visible only below $150\phantom{\rule{0.3em}{0ex}}\mathrm{K}$, whereas the A-free exciton transition at $3.3771\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$ persisted up to room temperature. A-free exciton binding energy of $60\phantom{\rule{0.3em}{0ex}}\mathrm{meV}$ is obtained from the position of the excited states of the free excitons. Additional intrinsic and extrinsic fine structures such as polariton, two-electron satellites, donor-acceptor pair transitions, and longitudinal optical-phonon replicas have also been observed and investigated in detail. Time-resolved PL measurements at room temperature reveal a biexponential decay behavior with typical decay constants of $\ensuremath{\sim}170$ and $\ensuremath{\sim}864\phantom{\rule{0.3em}{0ex}}\mathrm{ps}$ for the as-grown sample. Thermal treatment is observed to increase the carrier lifetimes when performed in a forming gas environment.

692 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured simulated emission (SE) from ZnO thin films grown on c-plane sapphire by rf sputtering and showed that SE can be obtained from both exciton-exciton scattering and electron hole plasma formation.
Abstract: Stimulated emission (SE) was measured from ZnO thin films grown on c-plane sapphire by rf sputtering. Free exciton transitions were clearly observed at 10 K in the photoluminescence (PL), transmission, and reflection spectra of the sample annealed at 950 °C. SE resulting from both exciton-exciton scattering and electron hole plasma formation was observed in the annealed samples at moderate excitation energy densities. The SE threshold energy density decreased with increasing annealing temperature up to ∼950 °C. The observation of low threshold exciton-exciton scattering-induced SE showed that excitonic laser action could be obtained in rf-sputtered ZnO thin films. At excitation densities below the SE threshold, time-resolved PL revealed very fast recombination times of ∼74 ps at room temperature, and no significant change at 85 K. The decay time for the SE-induced PL was below the system resolution of <45 ps.

120 citations

Journal ArticleDOI
TL;DR: In this article, a series of GaN layers were grown on Si(1?1)?1) with different buffer layers and buffer thicknesses and were characterized by Nomarski, atomic force microscopy, high-resolution x-ray diffraction (XRD) and photoluminescence (PL) measurements.
Abstract: We report the growth of GaN films on the Si(1?1?1) substrate by metalorganic chemical vapour phase deposition (MOCVD). Different buffer layers were used to investigate their effects on the structural and optical properties of GaN layers. A series of GaN layers were grown on Si(1?1?1) with different buffer layers and buffer thicknesses and were characterized by Nomarski microscopy, atomic force microscopy, high-resolution x-ray diffraction (XRD) and photoluminescence (PL) measurements. We first discuss the optimization of the LT-AlN/HT-AlN/Si(1?1?1) templates and then the optimization of the graded AlGaN intermediate layers. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.6??m. The XRD and PL measurements results confirmed that a wurtzite GaN was successfully grown. The resulting GaN film surfaces were flat, mirror-like and crack-free. The mosaic structure in the GaN layers was investigated. With a combination of Williamson?Hall measurements and the fitting of twist angles, it was found that the buffer thickness determines the lateral coherence length, vertical coherence length, as well as the tilt and twist of the mosaic blocks in GaN films. The PL spectra at 8?K show that a strong band edge photoluminescence of GaN on Si (1?1?1) emits light at an energy of 3.449?eV with a full width at half maximum (FWHM) of approximately 16?meV. At room temperature, the peak position and FWHM of this emission become 3.390?eV and 58?meV, respectively. The origin of this peak was attributed to the neutral donor bound exciton. It was found that the optimized total thickness of the AlN and graded AlGaN layers played a very important role in the improvement of quality and in turn reduced the cracks during the growth of GaN/Si(1?1?1) epitaxial layers.

110 citations

Journal ArticleDOI
TL;DR: In this article, a planar structure on high resistivity 4H-SiC was fabricated and tested at dc bias voltages up to 1000 V. Atomic force microscopy images revealed that very good surface morphology, atomic layer flatness, and large step width were achieved.
Abstract: Silicon carbide is a wide-band-gap semiconductor suitable for high-power high-voltage devices and it has excellent properties for use in photoconductive semiconductor switches (PCSSs). PCSS were fabricated as planar structures on high-resistivity 4H–SiC and tested at dc bias voltages up to 1000 V. The typical maximum photocurrent of the device at 1000 V was about 49.4 A. The average on-state resistance and the ratio of on-state to off-state currents were about 20 Ω and 3×1011, respectively. Photoconductivity pulse widths for all applied voltages were 8–10 ns. These excellent results are due in part to the removal of the surface damage by high-temperature H2 etching and surface preparation. Atomic force microscopy images revealed that very good surface morphology, atomic layer flatness, and large step width were achieved.

97 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: In this article, the status of zinc oxide as a semiconductor is discussed and the role of impurities and defects in the electrical conductivity of ZnO is discussed, as well as the possible causes of unintentional n-type conductivity.
Abstract: In the past ten years we have witnessed a revival of, and subsequent rapid expansion in, the research on zinc oxide (ZnO) as a semiconductor. Being initially considered as a substrate for GaN and related alloys, the availability of high-quality large bulk single crystals, the strong luminescence demonstrated in optically pumped lasers and the prospects of gaining control over its electrical conductivity have led a large number of groups to turn their research for electronic and photonic devices to ZnO in its own right. The high electron mobility, high thermal conductivity, wide and direct band gap and large exciton binding energy make ZnO suitable for a wide range of devices, including transparent thin-film transistors, photodetectors, light-emitting diodes and laser diodes that operate in the blue and ultraviolet region of the spectrum. In spite of the recent rapid developments, controlling the electrical conductivity of ZnO has remained a major challenge. While a number of research groups have reported achieving p-type ZnO, there are still problems concerning the reproducibility of the results and the stability of the p-type conductivity. Even the cause of the commonly observed unintentional n-type conductivity in as-grown ZnO is still under debate. One approach to address these issues consists of growing high-quality single crystalline bulk and thin films in which the concentrations of impurities and intrinsic defects are controlled. In this review we discuss the status of ZnO as a semiconductor. We first discuss the growth of bulk and epitaxial films, growth conditions and their influence on the incorporation of native defects and impurities. We then present the theory of doping and native defects in ZnO based on density-functional calculations, discussing the stability and electronic structure of native point defects and impurities and their influence on the electrical conductivity and optical properties of ZnO. We pay special attention to the possible causes of the unintentional n-type conductivity, emphasize the role of impurities, critically review the current status of p-type doping and address possible routes to controlling the electrical conductivity in ZnO. Finally, we discuss band-gap engineering using MgZnO and CdZnO alloys.

3,291 citations

Journal ArticleDOI
TL;DR: This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination,ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration.
Abstract: Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.

2,627 citations

Journal ArticleDOI
TL;DR: Despite the slow relaxation time, the extremely high internal gain of ZnO NW photodetectors results in gain-bandwidth products higher than approximately 10 GHz, which promise a new generation of phototransistors for applications such as sensing, imaging, and intrachip optical interconnects.
Abstract: ZnO nanowire (NW) visible-blind UV photodetectors with internal photoconductive gain as high as G ∼ 108 have been fabricated and characterized. The photoconduction mechanism in these devices has been elucidated by means of time-resolved measurements spanning a wide temporal domain, from 10-9 to 102 s, revealing the coexistence of fast (τ ∼ 20 ns) and slow (τ ∼ 10 s) components of the carrier relaxation dynamics. The extremely high photoconductive gain is attributed to the presence of oxygen-related hole-trap states at the NW surface, which prevents charge-carrier recombination and prolongs the photocarrier lifetime, as evidenced by the sensitivity of the photocurrrent to ambient conditions. Surprisingly, this mechanism appears to be effective even at the shortest time scale investigated of t < 1 ns. Despite the slow relaxation time, the extremely high internal gain of ZnO NW photodetectors results in gain-bandwidth products (GB) higher than ∼10 GHz. The high gain and low power consumption of NW photodetec...

2,448 citations

Journal ArticleDOI
TL;DR: Most of the plants used in metal nanoparticle synthesis are shown in this article, and the advantages of using plant and plant-derived materials for biosynthesis of metal nanoparticles have interested researchers to investigate mechanisms of metal ions uptake and bioreduction by plants, and to understand the possible mechanism of nanoparticle formation in plants.

2,424 citations