scispace - formally typeset
Search or ask a question
Author

A. Townsend Peterson

Bio: A. Townsend Peterson is an academic researcher from University of Kansas. The author has contributed to research in topics: Environmental niche modelling & Ecological niche. The author has an hindex of 91, co-authored 521 publications receiving 51524 citations. Previous affiliations of A. Townsend Peterson include California Academy of Sciences & University of Chicago.


Papers
More filters
Journal ArticleDOI
TL;DR: To evaluate the evolutionary conservatism of coarse‐resolution Grinnellian (or scenopoetic) ecological niches, a large number of studies have found that the latter are more conservative than the former.
Abstract: Aim To evaluate the evolutionary conservatism of coarse-resolution Grinnellian (or scenopoetic) ecological niches. Location Global. Methods I review a broad swathe of literature relevant to the topic of niche conservatism or differentiation, and illustrate some of the resulting insights with examplar analyses. Results Ecological niche characteristics are highly conserved over short-to-moderate time spans (i.e. from individual life spans up to tens or hundreds of thousands of years); little or no ecological niche differentiation is discernible as part of the processes of invasion or speciation. Main conclusions Although niche conservatism is widespread, many methodological complications obscure this point. In particular, niche models are frequently over-interpreted: too often, they are based on limited occurrence data in high-dimensional environmental spaces, and cannot be interpreted robustly to indicate niche differentiation.

655 citations

Journal ArticleDOI
TL;DR: In this article, a model of species' ecological niches is developed using an artificial-intelligence algorithm, and projected onto geography to predict species' distributions, using the North American Breeding Bird Survey data.
Abstract: Recent developments in geographic information systems and their application to conservation biology open doors to exciting new synthetic analyses. Exploration of these possibilities, however, is limited by the quality of information available: most biodiversity data are incomplete and characterized by biased sampling. Inferential procedures that provide robust and reliable predictions of species' geographic distributions thus become critical to biodiversity analyses. In this contribution, models of species' ecological niches are developed using an artificial-intelligence algorithm, and projected onto geography to predict species' distributions. To test the validity of this approach, I used North American Breeding Bird Survey data, with large sample sizes for many species. I omitted randomly selected states from model building, and tested models using the omitted states. For the 34 species tested, all predictions were highly statistically significant (all P < 0.001), indicating excellent predictiv...

598 citations

Journal ArticleDOI
18 Dec 2003-Nature
TL;DR: It is concluded that ecological niche modelling using recent locality records and readily available environmental coverage data provides informative biogeographical data for poorly known tropical landscapes, and offers innovative potential for the discovery of unknown distributional areas and unknown species.
Abstract: Despite the importance of tropical biodiversity, informative species distributional data are seldom available for biogeographical study or setting conservation priorities. Modelling ecological niche distributions of species offers a potential solution; however, the utility of old locality data from museums, and of more recent remotely sensed satellite data, remains poorly explored, especially for rapidly changing tropical landscapes. Using 29 modern data sets of environmental land coverage and 621 chameleon occurrence localities from Madagascar (historical and recent), here we demonstrate a significant ability of our niche models in predicting species distribution. At 11 recently inventoried sites, highest predictive success (85.1%) was obtained for models based only on modern occurrence data (74.7% and 82.8% predictive success, respectively, for pre-1978 and all data combined). Notably, these models also identified three intersecting areas of over-prediction that recently yielded seven chameleon species new to science. We conclude that ecological niche modelling using recent locality records and readily available environmental coverage data provides informative biogeographical data for poorly known tropical landscapes, and offers innovative potential for the discovery of unknown distributional areas and unknown species.

542 citations

Journal ArticleDOI
11 Jul 2007-PLOS ONE
TL;DR: Comparing ENM-based reconstructions of LGM refugial locations with those resulting from the more traditional molecular genetic and phylogeographic predictions confirms that ENM scenario exploration can provide a useful complement to molecular studies, offering a less subjective, spatially explicit hypothesis of past geographic patterns of distribution.
Abstract: Ecological niche models (ENMs) provide a means of characterizing the spatial distribution of suitable conditions for species, and have recently been applied to the challenge of locating potential distributional areas at the Last Glacial Maximum (LGM) when unfavorable climate conditions led to range contractions and fragmentation. Here, we compare and contrast ENM-based reconstructions of LGM refugial locations with those resulting from the more traditional molecular genetic and phylogeographic predictions. We examined 20 North American terrestrial vertebrate species from different regions and with different range sizes for which refugia have been identified based on phylogeographic analyses, using ENM tools to make parallel predictions. We then assessed the correspondence between the two approaches based on spatial overlap and areal extent of the predicted refugia. In 14 of the 20 species, the predictions from ENM and predictions based on phylogeographic studies were significantly spatially correlated, suggesting that the two approaches to development of refugial maps are converging on a similar result. Our results confirm that ENM scenario exploration can provide a useful complement to molecular studies, offering a less subjective, spatially explicit hypothesis of past geographic patterns of distribution.

519 citations

Journal ArticleDOI
TL;DR: In this article, the authors present longitudinal studies of 23 extant mammal species, modelling ecological niches and predicting geographical distributions reciprocally between the Last Glacial Maximum and present to test this evolutionary conservatism.
Abstract: Aim Theoretical work suggests that species’ ecological niches should remain relatively constant over long-term ecological time periods, but empirical tests are few. We present longitudinal studies of 23 extant mammal species, modelling ecological niches and predicting geographical distributions reciprocally between the Last Glacial Maximum and present to test this evolutionary conservatism. Location This study covered distributional shifts in mammal species across the lower 48 states of the United States.

452 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: In this paper, the use of the maximum entropy method (Maxent) for modeling species geographic distributions with presence-only data was introduced, which is a general-purpose machine learning method with a simple and precise mathematical formulation.

13,120 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
TL;DR: The Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software package version 1.7 is presented, which implements a family of Markov chain Monte Carlo algorithms for Bayesian phylogenetic inference, divergence time dating, coalescent analysis, phylogeography and related molecular evolutionary analyses.
Abstract: Computational evolutionary biology, statistical phylogenetics and coalescent-based population genetics are becoming increasingly central to the analysis and understanding of molecular sequence data. We present the Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software package version 1.7, which implements a family of Markov chain Monte Carlo (MCMC) algorithms for Bayesian phylogenetic inference, divergence time dating, coalescent analysis, phylogeography and related molecular evolutionary analyses. This package includes an enhanced graphical user interface program called Bayesian Evolutionary Analysis Utility (BEAUti) that enables access to advanced models for molecular sequence and phenotypic trait evolution that were previously available to developers only. The package also provides new tools for visualizing and summarizing multispecies coalescent and phylogeographic analyses. BEAUti and BEAST 1.7 are open source under the GNU lesser general public license and available at http://beast-mcmc.googlecode.com and http://beast.bio.ed.ac.uk

9,055 citations

Journal ArticleDOI
TL;DR: Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change.
Abstract: Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change Tropical coral reefs and amphibians have been most negatively affected Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level

7,657 citations