scispace - formally typeset
Search or ask a question
Author

A. van der Wal

Bio: A. van der Wal is an academic researcher from Wageningen University and Research Centre. The author has contributed to research in topics: Capacitive deionization & Adsorption. The author has an hindex of 22, co-authored 33 publications receiving 4879 citations. Previous affiliations of A. van der Wal include Université catholique de Louvain & Swiss Federal Institute of Aquatic Science and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: Capacitive deionization (CDI) as mentioned in this paper is a promising technology for energy-efficient water desalination using porous carbon electrodes, which is made of porous carbons optimized for salt storage capacity and ion and electron transport.

1,622 citations

Journal ArticleDOI
TL;DR: A theoretical process model for MCDI is presented which describes the time-dependent electric current and effluent ion concentration, both during the deionization stage and during the subsequent stage of ion release.

459 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a different operational mode for MCDI, whereby desalination is driven by a constant electrical current, which leads to a constant salt concentration in the desalinated stream over long periods of time.
Abstract: Membrane capacitive deionization (MCDI) is a water desalination technology based on applying a cell voltage between two oppositely placed porous electrodes sandwiching a spacer channel that transports the water to be desalinated. In the salt removal step, ions are adsorbed at the carbon–water interface within the micropores inside the porous electrodes. After the electrodes reach a certain adsorption capacity, the cell voltage is reduced or even reversed, which leads to ion release from the electrodes and a concentrated salt solution in the spacer channel, which is flushed out, after which the cycle can start over again. Ion-exchange membranes are positioned in front of each porous electrode, which has the advantage of preventing the co-ions from leaving the electrode region during ion adsorption, while also allowing for ion desorption at reversed voltage. Both effects significantly increase the salt removal capacity of the system per cycle. The classical operational mode of MCDI at a constant cell voltage results in an effluent stream of desalinated water of which the salt concentration varies with time. In this paper, we propose a different operational mode for MCDI, whereby desalination is driven by a constant electrical current, which leads to a constant salt concentration in the desalinated stream over long periods of time. Furthermore, we show how the salt concentration of the desalinated stream can be accurately adjusted to a certain setpoint, by either varying the electrical current level and/or the water flow rate. Finally, we present an extensive dataset for the energy requirements of MCDI, both for operation at constant voltage and at constant current, and in both cases also for the related technology in which membranes are not included (CDI). We find consistently that in MCDI the energy consumption per mole of salt removed is lower than that in CDI. Within the range 10–200 mM ionic strength of the water to be treated, we find for MCDI a constant energy consumption of ∼22 kT per ion removed. Results in this work are an essential tool to evaluate the economic viability of MCDI for the treatment of saltwater.

439 citations

Journal ArticleDOI
TL;DR: The measured adsorption capacity for four materials tested negatively correlates with known metrics for pore structure of the carbon powders such as total pore volume and BET-area, but is positively correlated with the volume of pores of sizes <1 nm, suggesting the relevance of these sub-nanometer pores for ion adsorptive capacity.
Abstract: Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in electrostatic double layers inside the negatively charged cathode and the anions are removed by the positively charged anode. One of the key parameters for commercial realization of CDI is the salt adsorption capacity of the electrodes. State-of-the-art electrode materials are based on porous activated carbon particles or carbon aerogels. Here we report the use for CDI of carbide-derived carbon (CDC), a porous material with well-defined and tunable pore sizes in the sub-nanometer range. When comparing electrodes made with CDC with electrodes based on activated carbon, we find a significantly higher salt adsorption capacity in the relevant cell voltage window of 1.2–1.4 V. The measured adsorption capacity for four materi...

388 citations

Journal ArticleDOI
01 Aug 2011
TL;DR: An extended theory for MCDI is set up which includes in the description for the porous electrodes not only the electrostatic double layers formed inside the porous (carbon) particles, but also incorporates the role of the transport pathways in the electrode, i.e., the interparticle pore space.
Abstract: Membrane capacitive deionization (MCDI) is a technology for water desalination based on applying an electrical field between two oppositely placed porous electrodes Ions are removed from the water flowing through a channel in between the electrodes and are stored inside the electrodes Ion-exchange membranes are placed in front of the electrodes allowing for counterion transfer from the channel into the electrode, while retaining the coions inside the electrode structure We set up an extended theory for MCDI which includes in the description for the porous electrodes not only the electrostatic double layers (EDLs) formed inside the porous (carbon) particles, but also incorporates the role of the transport pathways in the electrode, ie, the interparticle pore space Because in MCDI the coions are inhibited from leaving the electrode region, the interparticle porosity becomes available as a reservoir to store salt, thereby increasing the total salt storage capacity of the porous electrode A second advantage of MCDI is that during ion desorption (ion release) the voltage can be reversed In that case the interparticle porosity can be depleted of counterions, thereby increasing the salt uptake capacity and rate in the next cycle In this work, we compare both experimentally and theoretically adsorption/desorption cycles of MCDI for desorption at zero voltage as well as for reversed voltage, and compare with results for CDI To describe the EDL-structure a novel modified Donnan model is proposed valid for small pores relative to the Debye length

381 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Capacitive deionization (CDI) as mentioned in this paper is a promising technology for energy-efficient water desalination using porous carbon electrodes, which is made of porous carbons optimized for salt storage capacity and ion and electron transport.

1,622 citations

Journal ArticleDOI
TL;DR: Capacitive deionization (CDI) is an emerging technology for the facile removal of charged ionic species from aqueous solutions, and is currently being widely explored for water desalination applications.
Abstract: Capacitive deionization (CDI) is an emerging technology for the facile removal of charged ionic species from aqueous solutions, and is currently being widely explored for water desalination applications. The technology is based on ion electrosorption at the surface of a pair of electrically charged electrodes, commonly composed of highly porous carbon materials. The CDI community has grown exponentially over the past decade, driving tremendous advances via new cell architectures and system designs, the implementation of ion exchange membranes, and alternative concepts such as flowable carbon electrodes and hybrid systems employing a Faradaic (battery) electrode. Also, vast improvements have been made towards unraveling the complex processes inherent to interfacial electrochemistry, including the modelling of kinetic and equilibrium aspects of the desalination process. In our perspective, we critically review and evaluate the current state-of-the-art of CDI technology and provide definitions and performance metric nomenclature in an effort to unify the fast-growing CDI community. We also provide an outlook on the emerging trends in CDI and propose future research and development directions.

1,219 citations

Journal ArticleDOI
TL;DR: The recommendations given in the report apply mainly to smooth and homogeneous solid particles and plugs in aqueous systems; some attention is paid to nonaqueous media and less ideal surfaces.

1,160 citations

Journal ArticleDOI
TL;DR: This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal.
Abstract: Graphene-based materials are gaining heightened attention as novel materials for environmental applications The unique physicochemical properties of graphene, notably its exceptionally high surface area, electron mobility, thermal conductivity, and mechanical strength, can lead to novel or improved technologies to address the pressing global environmental challenges This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal The most promising areas of research are highlighted, with a discussion of the main challenges that we need to overcome in order to fully realize the exceptional properties of graphene in environmental applications

1,158 citations

Journal ArticleDOI
TL;DR: Current trends suggest that the theory and technology have matured sufficiently for most effort to now be directed towards applying DEP to unmet needs in such areas as biosensors, cell therapeutics, drug discovery, medical diagnostics, microfluidics, nanoassembly, and particle filtration.
Abstract: A review is presented of the present status of the theory, the developed technology and the current applications of dielectrophoresis (DEP). Over the past 10 years around 2000 publications have addressed these three aspects, and current trends suggest that the theory and technology have matured sufficiently for most effort to now be directed towards applying DEP to unmet needs in such areas as biosensors, cell therapeutics, drug discovery, medical diagnostics, microfluidics, nanoassembly, and particle filtration. The dipole approximation to describe the DEP force acting on a particle subjected to a nonuniform electric field has evolved to include multipole contributions, the perturbing effects arising from interactions with other cells and boundary surfaces, and the influence of electrical double-layer polarizations that must be considered for nanoparticles. Theoretical modelling of the electric field gradients generated by different electrode designs has also reached an advanced state. Advances in the technology include the development of sophisticated electrode designs, along with the introduction of new materials (e.g., silicone polymers, dry film resist) and methods for fabricating the electrodes and microfluidics of DEP devices (photo and electron beam lithography, laser ablation, thin film techniques, CMOS technology). Around three-quarters of the 300 or so scientific publications now being published each year on DEP are directed towards practical applications, and this is matched with an increasing number of patent applications. A summary of the US patents granted since January 2005 is given, along with an outline of the small number of perceived industrial applications (e.g., mineral separation, micropolishing, manipulation and dispensing of fluid droplets, manipulation and assembly of micro components). The technology has also advanced sufficiently for DEP to be used as a tool to manipulate nanoparticles (e.g., carbon nanotubes, nano wires, gold and metal oxide nanoparticles) for the fabrication of devices and sensors. Most efforts are now being directed towards biomedical applications, such as the spatial manipulation and selective separation/enrichment of target cells or bacteria, high-throughput molecular screening, biosensors, immunoassays, and the artificial engineering of three-dimensional cell constructs. DEP is able to manipulate and sort cells without the need for biochemical labels or other bioengineered tags, and without contact to any surfaces. This opens up potentially important applications of DEP as a tool to address an unmet need in stem cell research and therapy.

1,130 citations