scispace - formally typeset
Search or ask a question
Author

A. Vrieze

Bio: A. Vrieze is an academic researcher from University of Amsterdam. The author has contributed to research in topics: Gut flora & Insulin resistance. The author has an hindex of 10, co-authored 12 publications receiving 5783 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The infusion of donor feces was significantly more effective for the treatment of recurrent C. difficile infection than the use of vancomycin and patients showed increased fecal bacterial diversity, similar to that in healthy donors, with an increase in Bacteroidetes species and clostridium clusters IV and XIVa and a decrease in Proteobacteria species.
Abstract: A b s t r ac t Results The study was stopped after an interim analysis. Of 16 patients in the infusion group, 13 (81%) had resolution of C. difficile-associated diarrhea after the first infu - sion. The 3 remaining patients received a second infusion with feces from a differ- ent donor, with resolution in 2 patients. Resolution of C. difficile infection occurred in 4 of 13 patients (31%) receiving vancomycin alone and in 3 of 13 patients (23%) receiving vancomycin with bowel lavage (P<0.001 for both comparisons with the infusion group). No significant differences in adverse events among the three study groups were observed except for mild diarrhea and abdominal cramping in the in- fusion group on the infusion day. After donor-feces infusion, patients showed in- creased fecal bacterial diversity, similar to that in healthy donors, with an increase in Bacteroidetes species and clostridium clusters IV and XIVa and a decrease in Proteobacteria species. Conclusions The infusion of donor feces was significantly more effective for the treatment of recurrent C. difficile infection than the use of vancomycin. (Funded by the Nether- lands Organization for Health Research and Development and the Netherlands Organization for Scientific Research; Netherlands Trial Register number, NTR1177.)

3,081 citations

Journal ArticleDOI
TL;DR: Six weeks after infusion of microbiota from lean donors, insulin sensitivity of recipients increased along with levels of butyrate-producing intestinal microbiota, and intestinal microbiota might be developed as therapeutic agents to increase insulin sensitivity in humans.

2,304 citations

Journal ArticleDOI
TL;DR: This review discusses the relationships between the following: composition of gut microbiota, energy extracted from diet, synthesis of gut hormones involved in energy homeostasis, production of butyrate and the regulation of fat storage.
Abstract: Obesity, diabetes and consequently atherosclerotic vascular disease have become major health and public health issues worldwide The increasing and staggering prevalence of obesity might not only be explained by nutritional habits or the reduction of energy expenditure through decreased physical activity In addition, recent studies have focused on intestinal microbiota as environmental factors that increase energy yield from diet, regulate peripheral metabolism and thereby increase body weight Obesity is associated with substantial changes in composition and metabolic function of gut microbiota, but the pathophysiological processes driving this bidirectional relationship have not been fully elucidated This review discusses the relationships between the following: composition of gut microbiota, energy extracted from diet, synthesis of gut hormones involved in energy homeostasis, production of butyrate and the regulation of fat storage

314 citations

Journal ArticleDOI
TL;DR: The development of the adult human microbiome is described and how the composition of the gut microbiota changes in response to modulating factors is discussed, which aims to translate these findings into therapeutic pathways for obesity and T2DM in humans.
Abstract: Obesity and type 2 diabetes mellitus (T2DM) are attributed to a combination of genetic susceptibility and lifestyle factors. Their increasing prevalence necessitates further studies on modifiable causative factors and novel treatment options. The gut microbiota has emerged as an important contributor to the obesity--and T2DM--epidemic proposed to act by increasing energy harvest from the diet. Although obesity is associated with substantial changes in the composition and metabolic function of the gut microbiota, the pathophysiological processes remain only partly understood. In this review we will describe the development of the adult human microbiome and discuss how the composition of the gut microbiota changes in response to modulating factors. The influence of short-chain fatty acids, bile acids, prebiotics, probiotics, antibiotics and microbial transplantation is discussed from studies using animal and human models. Ultimately, we aim to translate these findings into therapeutic pathways for obesity and T2DM in humans.

311 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An expert panel was convened in October 2013 by the International Scientific Association for Probiotics and Prebiotics (ISAPP) to discuss the field of probiotics and the appropriate use and scope of the term probiotic.
Abstract: An expert panel was convened in October 2013 by the International Scientific Association for Probiotics and Prebiotics (ISAPP) to discuss the field of probiotics. It is now 13 years since the definition of probiotics and 12 years after guidelines were published for regulators, scientists and industry by the Food and Agriculture Organization of the United Nations and the WHO (FAO/WHO). The FAO/WHO definition of a probiotic--"live microorganisms which when administered in adequate amounts confer a health benefit on the host"--was reinforced as relevant and sufficiently accommodating for current and anticipated applications. However, inconsistencies between the FAO/WHO Expert Consultation Report and the FAO/WHO Guidelines were clarified to take into account advances in science and applications. A more precise use of the term 'probiotic' will be useful to guide clinicians and consumers in differentiating the diverse products on the market. This document represents the conclusions of the ISAPP consensus meeting on the appropriate use and scope of the term probiotic.

5,114 citations

Journal ArticleDOI
13 Sep 2012-Nature
TL;DR: Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, the world will be in a better position to develop treatments for metabolic disease.
Abstract: The link between the microbes in the human gut and the development of obesity, cardiovascular disease and metabolic syndromes, such as type 2 diabetes, is becoming clearer. However, because of the complexity of the microbial community, the functional connections are less well understood. Studies in both mice and humans are helping to show what effect the gut microbiota has on host metabolism by improving energy yield from food and modulating dietary or the host-derived compounds that alter host metabolic pathways. Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, we will be in a better position to develop treatments for metabolic disease.

3,436 citations

Journal ArticleDOI
27 Mar 2014-Cell
TL;DR: In high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nematodes, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses.

3,257 citations

Journal ArticleDOI
06 Sep 2013-Science
TL;DR: The results reveal that transmissible and modifiable interactions between diet and microbiota influence host biology and that adiposity is transmissible from human to mouse and that it was associated with changes in serum levels of branched-chain amino acids.
Abstract: How much does the microbiota influence the host's phenotype? Ridaura et al. ([1241214][1] ; see the Perspective by [ Walker and Parkhill ][2]) obtained uncultured fecal microbiota from twin pairs discordant for body mass and transplanted them into adult germ-free mice. It was discovered that adiposity is transmissible from human to mouse and that it was associated with changes in serum levels of branched-chain amino acids. Moreover, obese-phenotype mice were invaded by members of the Bacteroidales from the lean mice, but, happily, the lean animals resisted invasion by the obese microbiota. [1]: http://www.sciencemag.org/content/341/6150/1241214.full [2]: /lookup/doi/10.1126/science.1243787

2,929 citations

Journal ArticleDOI
06 Nov 2014-Cell
TL;DR: Compared microbiotas across >1,000 fecal samples obtained from the TwinsUK population, many microbial taxa whose abundances were influenced by host genetics were identified.

2,310 citations