scispace - formally typeset
Search or ask a question
Author

A. Wittchen

Other affiliations: Max Planck Society
Bio: A. Wittchen is an academic researcher from Leibniz University of Hanover. The author has contributed to research in topics: Physics & Pathfinder. The author has an hindex of 7, co-authored 13 publications receiving 679 citations. Previous affiliations of A. Wittchen include Max Planck Society.

Papers
More filters
Journal ArticleDOI
Michele Armano1, Heather Audley2, G. Auger3, J. Baird4, Massimo Bassan5, Pierre Binétruy3, M. Born2, Daniele Bortoluzzi6, N. Brandt7, M. Caleno1, L. Carbone6, Antonella Cavalleri8, A. Cesarini6, Giacomo Ciani6, G. Congedo6, A. M. Cruise9, Karsten Danzmann2, M. de Deus Silva1, R. De Rosa, M. Diaz-Aguilo10, L. Di Fiore, Ingo Diepholz2, G. Dixon9, Rita Dolesi6, N. Dunbar7, Luigi Ferraioli11, Valerio Ferroni6, Walter Fichter, E. D. Fitzsimons12, R. Flatscher7, M. Freschi1, A. F. García Marín2, C. García Marirrodriga1, R. Gerndt7, Lluis Gesa10, Ferran Gibert6, Domenico Giardini11, R. Giusteri6, F. Guzmán2, Aniello Grado13, Catia Grimani14, A. Grynagier, J. Grzymisch1, I. Harrison15, Gerhard Heinzel2, M. Hewitson2, Daniel Hollington4, D. Hoyland9, Mauro Hueller6, Henri Inchauspe3, Oliver Jennrich1, Ph. Jetzer16, Ulrich Johann7, B. Johlander1, Nikolaos Karnesis2, B. Kaune2, N. Korsakova2, Christian J. Killow17, J. A. Lobo10, Ivan Lloro10, L. Liu6, J. P. López-Zaragoza10, R. Maarschalkerweerd15, Davor Mance11, V. Martín10, L. Martin-Polo1, J. Martino3, F. Martin-Porqueras1, S. Madden1, Ignacio Mateos10, Paul McNamara1, José F. F. Mendes15, L. Mendes1, A. Monsky2, Daniele Nicolodi6, Miquel Nofrarías10, S. Paczkowski2, Michael Perreur-Lloyd17, Antoine Petiteau3, P. Pivato6, Eric Plagnol3, P. Prat3, U. Ragnit1, B. Rais3, Juan Ramos-Castro18, J. Reiche2, D. I. Robertson17, H. Rozemeijer1, F. Rivas10, G. Russano6, J Sanjuán10, P. Sarra, A. Schleicher7, D. Shaul4, Jacob Slutsky19, Carlos F. Sopuerta10, Ruggero Stanga20, F. Steier2, T. J. Sumner4, D. Texier1, James Ira Thorpe19, C. Trenkel7, Michael Tröbs2, H. B. Tu6, Daniele Vetrugno6, Stefano Vitale6, V Wand2, Gudrun Wanner2, H. Ward17, C. Warren7, Peter Wass4, D. Wealthy7, W. J. Weber6, L. Wissel2, A. Wittchen2, A. Zambotti6, C. Zanoni6, Tobias Ziegler7, Peter Zweifel11 
TL;DR: The first results of the LISA Pathfinder in-flight experiment demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density.
Abstract: We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 +/- 0.1 fm s(exp -2)/square root of Hz, or (0.54 +/- 0.01) x 10(exp -15) g/square root of Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 +/- 0.3) fm square root of Hz, about 2 orders of magnitude better than requirements. At f less than or equal to 0.5 mHz we observe a low-frequency tail that stays below 12 fm s(exp -2)/square root of Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

523 citations

Journal ArticleDOI
TL;DR: This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.
Abstract: In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20 μ Hz . The Letter presents the measured differential acceleration noise figure, which is at ( 1.74 ± 0.01 ) fm s − 2 / √ Hz above 2 mHz and ( 6 ± 1 ) × 10 fm s − 2 / √ Hz at 20 μ Hz , and discusses the physical sources for the measured noise. This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.

271 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on the temperature measurements throughout mission operations, characterize the thermal environment, estimate transfer functions between different locations, and report temperature stability (and its time evolution) at frequencies as low as 10'|$\mu$|Hz, where typically values around 1'K'Hz^−1'1/2 were measured.
Abstract: LISA Pathfinder (LPF) was a technology pioneering mission designed to test key technologies required for gravitational wave detection in space. In the low frequency regime (milliHertz and below), where space-based gravitational wave observatories will operate, temperature fluctuations play a crucial role since they can couple into the interferometric measurement and the test masses’ free-fall accuracy in many ways. A dedicated temperature measurement subsystem, with noise levels in 10 |$\mu$|K Hz^−1/2 down to 1 mHz was part of the diagnostics unit onboard LPF. In this paper we report on the temperature measurements throughout mission operations, characterize the thermal environment, estimate transfer functions between different locations, and report temperature stability (and its time evolution) at frequencies as low as 10 |$\mu$|Hz, where typically values around 1 K Hz^−1/2 were measured.

23 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on the magnetic measurements throughout LISA Pathfinder (LPF) operations and characterize the magnetic environment within the spacecraft, study the time evolution of the magnetic field and its stability down to 20μHz.
Abstract: LISA Pathfinder (LPF) has been a space-based mission designed to test new technologies that will be required for a gravitational wave observatory in space. Magnetically driven forces play a key role in the instrument sensitivity in the low-frequency regime (mHz and below), the measurement band of interest for a space-based observatory. The magnetic field can couple to the magnetic susceptibility and remanent magnetic moment from the test masses and disturb them from their geodesic movement. LPF carried on-board a dedicated magnetic measurement subsystem with noise levels of 10 |$\rm nT \ Hz^{-1/2}$| from 1 Hz down to 1 mHz. In this paper we report on the magnetic measurements throughout LPF operations. We characterize the magnetic environment within the spacecraft, study the time evolution of the magnetic field and its stability down to 20 μHz, where we measure values around 200 |$\rm nT \ Hz^{-1/2}$|⁠, and identify two different frequency regimes, one related to the interplanetary magnetic field and the other to the magnetic field originating inside the spacecraft. Finally, we characterize the non-stationary component of the fluctuations of the magnetic field below the mHz and relate them to the dynamics of the solar wind.

21 citations

Journal ArticleDOI
Michele Armano1, Heather Audley2, G. Auger3, J. Baird4, Pierre Binétruy3, M. Born2, Daniele Bortoluzzi5, N. Brandt6, A. Bursi, M. Caleno1, Antonella Cavalleri7, A. Cesarini5, M. Cruise8, Karsten Danzmann2, M. de Deus Silva1, D. Desiderio, E. Piersanti, Ingo Diepholz2, Rita Dolesi5, N. Dunbar6, Luigi Ferraioli9, Valerio Ferroni5, Ewan Fitzsimons6, R. Flatscher6, M. Freschi1, J. Gallegos1, C. García Marirrodriga1, R. Gerndt6, Lluis Gesa10, Ferran Gibert5, Domenico Giardini9, R. Giusteri5, Catia Grimani11, J. Grzymisch1, I. Harrison12, Gerhard Heinzel2, M. Hewitson2, Daniel Hollington4, Mauro Hueller5, J. Huesler1, Henri Inchauspe3, Oliver Jennrich1, Philippe Jetzer13, B. Johlander1, Nikolaos Karnesis2, B. Kaune2, N. Korsakova2, Christian J. Killow14, Ivan Lloro10, L. Liu5, J. P. López-Zaragoza10, R. Maarschalkerweerd12, S. Madden1, Davor Mance9, V. Martín10, L. Martin-Polo1, J. Martino3, F. Martin-Porqueras1, Ignacio Mateos10, Paul McNamara1, José F. F. Mendes12, Luis Mendes1, A. Moroni, Miquel Nofrarías10, S. Paczkowski2, Michael Perreur-Lloyd14, Antoine Petiteau3, P. Pivato5, Eric Plagnol3, P. Prat3, U. Ragnit1, Juan Ramos-Castro15, J. Reiche2, J. A. Romera Perez1, D. I. Robertson14, H. Rozemeijer1, F. Rivas10, G. Russano5, P. Sarra, A. Schleicher6, Jacob Slutsky16, Carlos F. Sopuerta10, T. J. Sumner4, D. Texier1, James Ira Thorpe16, R. Tomlinson6, C. Trenkel6, Daniele Vetrugno5, Stefano Vitale5, Gudrun Wanner2, H. Ward14, C. Warren6, Peter Wass4, D. Wealthy6, W. J. Weber5, A. Wittchen2, C. Zanoni5, Tobias Ziegler6, Peter Zweifel9 
TL;DR: The LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested.
Abstract: LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. LTP achieves measurements of differential acceleration of free-falling test masses (TMs) with sensitivity below 3 x 10(exp -14) m s(exp -2) Hz(exp - 1/2) within the 130 mHz frequency band in one dimension. The spacecraft itself is responsible for the dominant differential gravitational field acting on the two TMs. Such a force interaction could contribute a significant amount of noise and thus threaten the achievement of the targeted free-fall level. We prevented this by balancing the gravitational forces to the sub nm s(exp -2) level, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In this paper, we will introduce the gravitational balance requirements and design, and then discuss our predictions for the balance that will be achieved in flight.

19 citations


Cited by
More filters
01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

Journal ArticleDOI
TL;DR: In this article, the authors review early universe sources that can lead to cosmological backgrounds of GWs and discuss the basic characteristics of present and future GW detectors, including advanced LIGO, advanced Virgo, the Einstein telescope, KAGRA, and LISA.
Abstract: Gravitational waves (GWs) have a great potential to probe cosmology. We review early universe sources that can lead to cosmological backgrounds of GWs. We begin by presenting proper definitions of GWs in flat space-time and in a cosmological setting (section 2). Following, we discuss the reasons why early universe GW backgrounds are of a stochastic nature, and describe the general properties of a stochastic background (section 3). We recap current observational constraints on stochastic backgrounds, and discuss the basic characteristics of present and future GW detectors, including advanced LIGO, advanced Virgo, the Einstein telescope, KAGRA, and LISA (section 4). We then review in detail early universe GW generation mechanisms, as well as the properties of the GW backgrounds they give rise to. We classify the backgrounds in five categories: GWs from quantum vacuum fluctuations during standard slow-roll inflation (section 5), GWs from processes that operate within extensions of the standard inflationary paradigm (section 6), GWs from post-inflationary preheating and related non-perturbative phenomena (section 7), GWs from first order phase transitions related or not to the electroweak symmetry breaking (section 8), and GWs from general topological defects, and from cosmic strings in particular (section 9). The phenomenology of these early universe processes is extremely rich, and some of the GW backgrounds they generate can be within the reach of near-future GW detectors. A future detection of any of these backgrounds will provide crucial information on the underlying high energy theory describing the early universe, probing energy scales well beyond the reach of particle accelerators.

643 citations

Journal ArticleDOI
TL;DR: In this paper, the LISA space-based interferometer was used to detect the stochastic gravitational wave background produced from different mechanisms during inflation, focusing on well-motivated scenarios.
Abstract: We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

418 citations

Journal ArticleDOI
TL;DR: The MICROSCOPE satellite aims to test its validity at the 10^{-15} precision level, by measuring the force required to maintain two test masses exactly in the same orbit, by characterizing the relative difference in their free-fall accelerations.
Abstract: According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10−15 precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives δ(Ti; Pt)=[-1+/-9(stat)+/-9(syst)] × 10−15 (1σ statistical uncertainty) for the titanium-platinum Eotvos parameter characterizing the relative difference in their free-fall accelerations.

321 citations

Journal ArticleDOI
TL;DR: The article considers both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and it allows for anisotropy, non-Gaussianity, and non-standard polarization states.
Abstract: We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and we allow for anisotropy, non-Gaussianity, and non-standard polarization states. Our focus is on relevant data analysis issues, and not on the particular astrophysical or early Universe sources that might give rise to such backgrounds. We provide a unified treatment of these searches at the level of detector response functions, detection sensitivity curves, and, more generally, at the level of the likelihood function, since the choice of signal and noise models and prior probability distributions are actually what define the search. Pedagogical examples are given whenever possible to compare and contrast different approaches. We have tried to make the article as self-contained and comprehensive as possible, targeting graduate students and new researchers looking to enter this field.

306 citations