scispace - formally typeset
Search or ask a question
Author

A. Zaidi

Bio: A. Zaidi is an academic researcher from Manchester Royal Infirmary. The author has contributed to research in topics: QRS complex. The author has an hindex of 1, co-authored 1 publications receiving 178 citations.
Topics: QRS complex

Papers
More filters
Proceedings ArticleDOI
24 Sep 2000
TL;DR: A robust new algorithm for QRS defection using the properties of the Hilbert transform is proposed, which allows R waves to be differentiated from large, peaked T and P waves with a high degree of accuracy and minimizes the problems associated with baseline drift, motion artifacts and muscular noise.
Abstract: A robust new algorithm for QRS defection using the properties of the Hilbert transform is proposed. The method allows R waves to be differentiated from large, peaked T and P waves with a high degree of accuracy and minimizes the problems associated with baseline drift, motion artifacts and muscular noise. The performance of the algorithm was tested using the records of the MIT-BIH Arrhythmia Database. Beat by beat comparison was performed according to the recommendation of the American National Standard for ambulatory ECG analyzers (ANSI/AAMI EC38-1998). A QRS detection rate of 99.64%, a sensitivity of 99.81% and a positive prediction of 99.83% was achieved against the MIT-BIH Arrhythmia database. The noise tolerance of the new proposed QRS detector was also tested using standard records from the MIT-BIH Noise Stress Test Database. The sensitivity of the detector remains about 94% even for signal-to-noise ratios (SNR) as low as 6 dB.

190 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The modified Hamilton-Tompkins algorithm as well as the Hilbert transform-based algorithms had comparable, though slightly lower, accuracy; yet these automated algorithms present an advantage for real-time applications by avoiding human intervention in threshold determination.
Abstract: Accurate QRS detection is an important first step for the analysis of heart rate variability Algorithms based on the differentiated ECG are computationally efficient and hence ideal for real-time analysis of large datasets Here, we analyze traditional first-derivative based squaring function (Hamilton-Tompkins) and Hilbert transform-based methods for QRS detection and their modifications with improved detection thresholds On a standard ECG dataset, the Hamilton-Tompkins algorithm had the highest detection accuracy (9968% sensitivity, 9963% positive predictivity) but also the largest time error The modified Hamilton-Tompkins algorithm as well as the Hilbert transform-based algorithms had comparable, though slightly lower, accuracy; yet these automated algorithms present an advantage for real-time applications by avoiding human intervention in threshold determination The high accuracy of the Hilbert transform-based method compared to detection with the second derivative of the ECG is ascribable to its inherently uniform magnitude spectrum For all algorithms, detection errors occurred mainly in beats with decreased signal slope, such as wide arrhythmic beats or attenuated beats For best performance, a combination of the squaring function and Hilbert transform-based algorithms can be applied such that differences in detection will point to abnormalities in the signal that can be further analyzed

407 citations

Journal ArticleDOI
16 Sep 2013-PLOS ONE
TL;DR: In this article, the authors proposed a simple-fast method for automatic QRS detection based on two moving averages that are calibrated by a knowledge base using only two parameters, which can be easily implemented in a digital filter design.
Abstract: The current state-of-the-art in automatic QRS detection methods show high robustness and almost negligible error rates. In return, the methods are usually based on machine-learning approaches that require sufficient computational resources. However, simple-fast methods can also achieve high detection rates. There is a need to develop numerically efficient algorithms to accommodate the new trend towards battery-driven ECG devices and to analyze long-term recorded signals in a time-efficient manner. A typical QRS detection method has been reduced to a basic approach consisting of two moving averages that are calibrated by a knowledge base using only two parameters. In contrast to high-accuracy methods, the proposed method can be easily implemented in a digital filter design.

195 citations

Posted Content
01 Jan 2013-viXra
TL;DR: In this paper, the authors investigate current QRS detection algorithms based on three assessment criteria: robustness to noise, parameter choice, and numerical eciency, in order to target a universal fast-robust detector.
Abstract: Cardiovascular diseases are the number one cause of death worldwide. Currently, portable batteryoperated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical eciency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.

165 citations

Journal ArticleDOI
07 Jan 2014-PLOS ONE
TL;DR: This work investigates current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector.
Abstract: Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.

163 citations

Journal ArticleDOI
TL;DR: The experimental results indicate that the DWT and DTCWT based feature extraction technique classifies ECGs beats with an overall sensitivity of 91.23% and 94.64%, respectively when tested over five types of ECG beats of MIT-BIH Arrhythmia database.
Abstract: Early detection of cardiac diseases using computer aided diagnosis system reduces the high mortality rate among heart patients. The detection of cardiac arrhythmias is a challenging task since the small variations in electrocardiogram (ECG) signals cannot be distinguished precisely by human eye. In this paper, dual tree complex wavelet transform (DTCWT) based feature extraction technique for automatic classification of cardiac arrhythmias is proposed. The feature set comprises of complex wavelet coefficients extracted from the fourth and fifth scale DTCWT decomposition of a QRS complex signal in conjunction with four other features (AC power, kurtosis, skewness and timing information) extracted from the QRS complex signal. This feature set is classified using multi-layer back propagation neural network. The performance of the proposed feature set is compared with statistical features extracted from the sub-bands obtained after decomposition of the QRS complex signal using discrete wavelet transform (DWT) and with four other features (AC power, kurtosis, skewness and timing information) extracted from the QRS complex signal. The experimental results indicate that the DWT and DTCWT based feature extraction technique classifies ECG beats with an overall sensitivity of 91.23% and 94.64%, respectively when tested over five types of ECG beats of MIT-BIH Arrhythmia database.

160 citations