scispace - formally typeset
Search or ask a question
Author

A. Zamzamian

Bio: A. Zamzamian is an academic researcher from United States Department of Energy. The author has contributed to research in topics: Nanofluid & Heat transfer coefficient. The author has an hindex of 13, co-authored 17 publications receiving 991 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors measured the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data and evaluated the effects of particle concentration and operating temperature.

287 citations

Journal ArticleDOI
TL;DR: In this article, a perforated louvered twisted tape (LTT) was used to enhance the convection heat transfer coefficient of a solar parabolic trough concentrator with a new wraparound cover.

125 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of Cu nanoparticles on the efficiency of a flatplate solar collector was investigated in different volume flow rates of the nanofluid from 0.016 to 0.050 kg/s.

121 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal performance of a nanofluid flow through a flat plate solar collector with the metal porous foam filled channel is experimentally investigated, and the performance evaluation criterion (PEC) has been used for both the SiO2 and porous media separately.

113 citations

Journal ArticleDOI
TL;DR: In this article, a comparative evaluation of seven common configurations of channels used in plate-fin heat exchangers is presented, including plain, perforated, offset strip, louvered, wavy, vortex-generator, and pin.

94 citations


Cited by
More filters
01 Jan 2016
TL;DR: The principles of enhanced heat transfer is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for reading principles of enhanced heat transfer. As you may know, people have look numerous times for their chosen books like this principles of enhanced heat transfer, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their desktop computer. principles of enhanced heat transfer is available in our book collection an online access to it is set as public so you can get it instantly. Our books collection spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the principles of enhanced heat transfer is universally compatible with any devices to read.

553 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the important published articles on the enhancement of the convection heat transfer in heat exchangers using nanofluids on two topics: theoretical and experimental results for the effective thermal conductivity, viscosity and the Nusselt number reported by several authors.
Abstract: The purpose of this review summarizes the important published articles on the enhancement of the convection heat transfer in heat exchangers using nanofluids on two topics. The first section focuses on presenting the theoretical and experimental results for the effective thermal conductivity, viscosity and the Nusselt number reported by several authors. The second section concentrates on application of nanofluids in various types of heat exchangers: plate heat exchangers, shell and tube heat exchangers, compact heat exchangers and double pipe heat exchangers.

421 citations

Journal ArticleDOI
TL;DR: In this paper, an extensive literature review of various turbulators (coiled tubes, extended surfaces (fin, louvered strip, winglet), rough surfaces (Corrugated tube, Rib) and swirl flow devices such as twisted tape, conical ring, snail entry turbulator, vortex rings, coiled wire) for enhancing heat transfer in heat exchangers.
Abstract: Economic reasons (material and energy saving) leads to make efforts for making more efficient heat exchange. The heat transfer enhancement techniques are widely used in many applications in the heating process to make possible reduction in weight and size or enhance the performance of heat exchangers. These techniques are classified as active and passive techniques. The active technique required external power while the passive technique does not need any external power. The passive techniques are valuable compared with the active techniques because the swirl inserts manufacturing process is simple and can be easily employed in an existing heat exchanger. Insertion of swirl flow devices enhance the convective heat transfer by making swirl into the bulk flow and disrupting the boundary layer at the tube surface due to repeated changes in the surface geometry. An effort has been made in this paper to carry out an extensive literature review of various turbulators (coiled tubes, extended surfaces (fin, louvered strip, winglet), rough surfaces (Corrugated tube, Rib) and swirl flow devices such as twisted tape, conical ring, snail entry turbulator, vortex rings, coiled wire) for enhancing heat transfer in heat exchangers. It can be concluded that wire coil gives better overall performance if the pressure drop penalty is considered. The use of coiled square wire turbulators leads to a considerable increase in heat transfer and friction loss over those of a smooth wall tube.

344 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the recent advances in the nanofluids' applications in solar energy systems, i.e., solar collectors, photovoltaic/thermal (PV/T) systems, solar thermoelectric devices, solar water heaters, solar-geothermal combined cooling heating and power system (CCHP), evaporative cooling for greenhouses, and water desalination.
Abstract: Solar energy systems (SESs) are considered as one of the most important alternatives to conventional fossil fuels, due to its ability to convert solar energy directly into heat and electricity without any negative environmental impact such as greenhouse gas emissions. Utilizing nanofluid as a potential heat transfer fluid with superior thermophysical properties is an effective method to enhance the thermal performance of solar energy systems. The purpose of this review paper is the investigation of the recent advances in the nanofluids’ applications in solar energy systems, i.e., solar collectors (SCs), photovoltaic/thermal (PV/T) systems, solar thermoelectric devices, solar water heaters, solar-geothermal combined cooling heating and power system (CCHP), evaporative cooling for greenhouses, and water desalination.

326 citations

Journal ArticleDOI
TL;DR: In this paper, a review on application of nanofluids in heat exchangers has been addressed, and it can be concluded that the use of nanophotonics in most cases improves heat transfer, which reduces the volume of heat exchanger, saving energy, consequently water consumption and industrial waste.

325 citations