scispace - formally typeset
Search or ask a question
Author

Aaron B. Caughey

Bio: Aaron B. Caughey is an academic researcher from Oregon Health & Science University. The author has contributed to research in topics: Pregnancy & Medicine. The author has an hindex of 82, co-authored 808 publications receiving 24768 citations. Previous affiliations of Aaron B. Caughey include Harvard University & American Congress of Obstetricians and Gynecologists.


Papers
More filters
Journal ArticleDOI
TL;DR: Safe reduction of the rate of primary cesarean deliveries will require different approaches for each of the most common indications, including labor dystocia, abnormal or indeterminate fetal heart rate tracing, fetal malpresentation, multiple gestation, and suspected fetal macrosomia.

1,033 citations

Journal ArticleDOI
08 May 2018-JAMA
TL;DR: The USPSTF concludes with moderate certainty that the net benefit of PSA-based screening for prostate cancer in men aged 55 to 69 years is small for some men.
Abstract: Importance In the United States, the lifetime risk of being diagnosed with prostate cancer is approximately 11%, and the lifetime risk of dying of prostate cancer is 2.5%. The median age of death from prostate cancer is 80 years. Many men with prostate cancer never experience symptoms and, without screening, would never know they have the disease. African American men and men with a family history of prostate cancer have an increased risk of prostate cancer compared with other men. Objective To update the 2012 US Preventive Services Task Force (USPSTF) recommendation on prostate-specific antigen (PSA)–based screening for prostate cancer. Evidence Review The USPSTF reviewed the evidence on the benefits and harms of PSA-based screening for prostate cancer and subsequent treatment of screen-detected prostate cancer. The USPSTF also commissioned a review of existing decision analysis models and the overdiagnosis rate of PSA-based screening. The reviews also examined the benefits and harms of PSA-based screening in patient subpopulations at higher risk of prostate cancer, including older men, African American men, and men with a family history of prostate cancer. Findings Adequate evidence from randomized clinical trials shows that PSA-based screening programs in men aged 55 to 69 years may prevent approximately 1.3 deaths from prostate cancer over approximately 13 years per 1000 men screened. Screening programs may also prevent approximately 3 cases of metastatic prostate cancer per 1000 men screened. Potential harms of screening include frequent false-positive results and psychological harms. Harms of prostate cancer treatment include erectile dysfunction, urinary incontinence, and bowel symptoms. About 1 in 5 men who undergo radical prostatectomy develop long-term urinary incontinence, and 2 in 3 men will experience long-term erectile dysfunction. Adequate evidence shows that the harms of screening in men older than 70 years are at least moderate and greater than in younger men because of increased risk of false-positive results, diagnostic harms from biopsies, and harms from treatment. The USPSTF concludes with moderate certainty that the net benefit of PSA-based screening for prostate cancer in men aged 55 to 69 years is small for some men. How each man weighs specific benefits and harms will determine whether the overall net benefit is small. The USPSTF concludes with moderate certainty that the potential benefits of PSA-based screening for prostate cancer in men 70 years and older do not outweigh the expected harms. Conclusions and Recommendation For men aged 55 to 69 years, the decision to undergo periodic PSA-based screening for prostate cancer should be an individual one and should include discussion of the potential benefits and harms of screening with their clinician. Screening offers a small potential benefit of reducing the chance of death from prostate cancer in some men. However, many men will experience potential harms of screening, including false-positive results that require additional testing and possible prostate biopsy; overdiagnosis and overtreatment; and treatment complications, such as incontinence and erectile dysfunction. In determining whether this service is appropriate in individual cases, patients and clinicians should consider the balance of benefits and harms on the basis of family history, race/ethnicity, comorbid medical conditions, patient values about the benefits and harms of screening and treatment-specific outcomes, and other health needs. Clinicians should not screen men who do not express a preference for screening. (C recommendation) The USPSTF recommends against PSA-based screening for prostate cancer in men 70 years and older. (D recommendation)

902 citations

Journal ArticleDOI
21 Aug 2018-JAMA
TL;DR: The USPSTF concludes with high certainty that the benefits of screening every 3 years with cytology alone in women aged 21 to 29 years substantially outweigh the harms and screening women younger than 21 years does not provide significant benefit.
Abstract: Importance The number of deaths from cervical cancer in the United States has decreased substantially since the implementation of widespread cervical cancer screening and has declined from 2.8 to 2.3 deaths per 100 000 women from 2000 to 2015. Objective To update the US Preventive Services Task Force (USPSTF) 2012 recommendation on screening for cervical cancer. Evidence Review The USPSTF reviewed the evidence on screening for cervical cancer, with a focus on clinical trials and cohort studies that evaluated screening with high-risk human papillomavirus (hrHPV) testing alone or hrHPV and cytology together (cotesting) compared with cervical cytology alone. The USPSTF also commissioned a decision analysis model to evaluate the age at which to begin and end screening, the optimal interval for screening, the effectiveness of different screening strategies, and related benefits and harms of different screening strategies. Findings Screening with cervical cytology alone, primary hrHPV testing alone, or cotesting can detect high-grade precancerous cervical lesions and cervical cancer. Screening women aged 21 to 65 years substantially reduces cervical cancer incidence and mortality. The harms of screening for cervical cancer in women aged 30 to 65 years are moderate. The USPSTF concludes with high certainty that the benefits of screening every 3 years with cytology alone in women aged 21 to 29 years substantially outweigh the harms. The USPSTF concludes with high certainty that the benefits of screening every 3 years with cytology alone, every 5 years with hrHPV testing alone, or every 5 years with both tests (cotesting) in women aged 30 to 65 years outweigh the harms. Screening women older than 65 years who have had adequate prior screening and women younger than 21 years does not provide significant benefit. Screening women who have had a hysterectomy with removal of the cervix for indications other than a high-grade precancerous lesion or cervical cancer provides no benefit. The USPSTF concludes with moderate to high certainty that screening women older than 65 years who have had adequate prior screening and are not otherwise at high risk for cervical cancer, screening women younger than 21 years, and screening women who have had a hysterectomy with removal of the cervix for indications other than a high-grade precancerous lesion or cervical cancer does not result in a positive net benefit. Conclusions and Recommendation The USPSTF recommends screening for cervical cancer every 3 years with cervical cytology alone in women aged 21 to 29 years. (A recommendation) The USPSTF recommends screening every 3 years with cervical cytology alone, every 5 years with hrHPV testing alone, or every 5 years with hrHPV testing in combination with cytology (cotesting) in women aged 30 to 65 years. (A recommendation) The USPSTF recommends against screening for cervical cancer in women younger than 21 years. (D recommendation) The USPSTF recommends against screening for cervical cancer in women older than 65 years who have had adequate prior screening and are not otherwise at high risk for cervical cancer. (D recommendation) The USPSTF recommends against screening for cervical cancer in women who have had a hysterectomy with removal of the cervix and do not have a history of a high-grade precancerous lesion or cervical cancer. (D recommendation)

745 citations

Journal ArticleDOI
09 Mar 2021-JAMA
TL;DR: The US Preventive Services Task Force (USPSTF) concluded with moderate certainty that annual screening for lung cancer with LDCT has a moderate net benefit in persons at high risk of lung cancer based on age, total cumulative exposure to tobacco smoke, and years since quitting smoking as mentioned in this paper.
Abstract: Importance Lung cancer is the second most common cancer and the leading cause of cancer death in the US. In 2020, an estimated 228 820 persons were diagnosed with lung cancer, and 135 720 persons died of the disease. The most important risk factor for lung cancer is smoking. Increasing age is also a risk factor for lung cancer. Lung cancer has a generally poor prognosis, with an overall 5-year survival rate of 20.5%. However, early-stage lung cancer has a better prognosis and is more amenable to treatment. Objective To update its 2013 recommendation, the US Preventive Services Task Force (USPSTF) commissioned a systematic review on the accuracy of screening for lung cancer with low-dose computed tomography (LDCT) and on the benefits and harms of screening for lung cancer and commissioned a collaborative modeling study to provide information about the optimum age at which to begin and end screening, the optimal screening interval, and the relative benefits and harms of different screening strategies compared with modified versions of multivariate risk prediction models. Population This recommendation statement applies to adults aged 50 to 80 years who have a 20 pack-year smoking history and currently smoke or have quit within the past 15 years. Evidence Assessment The USPSTF concludes with moderate certainty that annual screening for lung cancer with LDCT has a moderate net benefit in persons at high risk of lung cancer based on age, total cumulative exposure to tobacco smoke, and years since quitting smoking. Recommendation The USPSTF recommends annual screening for lung cancer with LDCT in adults aged 50 to 80 years who have a 20 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery. (B recommendation) This recommendation replaces the 2013 USPSTF statement that recommended annual screening for lung cancer with LDCT in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years.

600 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions.
Abstract: This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions There will be an estimated 181 million new cancer cases (170 million excluding nonmelanoma skin cancer) and 96 million cancer deaths (95 million excluding nonmelanoma skin cancer) in 2018 In both sexes combined, lung cancer is the most commonly diagnosed cancer (116% of the total cases) and the leading cause of cancer death (184% of the total cancer deaths), closely followed by female breast cancer (116%), prostate cancer (71%), and colorectal cancer (61%) for incidence and colorectal cancer (92%), stomach cancer (82%), and liver cancer (82%) for mortality Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality) Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts CA: A Cancer Journal for Clinicians 2018;0:1-31 © 2018 American Cancer Society

58,675 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations

Journal ArticleDOI
TL;DR: The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2015, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2016, were collected by the National Center for Health Statistics. In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2006-2015) was stable in women and declined by approximately 2% per year in men, whereas the cancer death rate (2007-2016) declined annually by 1.4% and 1.8%, respectively. The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the racial gap in cancer mortality is slowly narrowing, socioeconomic inequalities are widening, with the most notable gaps for the most preventable cancers. For example, compared with the most affluent counties, mortality rates in the poorest counties were 2-fold higher for cervical cancer and 40% higher for male lung and liver cancers during 2012-2016. Some states are home to both the wealthiest and the poorest counties, suggesting the opportunity for more equitable dissemination of effective cancer prevention, early detection, and treatment strategies. A broader application of existing cancer control knowledge with an emphasis on disadvantaged groups would undoubtedly accelerate progress against cancer.

16,028 citations

Journal ArticleDOI
TL;DR: Slow momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers, and it is notable that long‐term rapid increases in liver cancer mortality have attenuated in women and stabilized in men.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.

15,080 citations

Journal ArticleDOI
TL;DR: In the United States, the cancer death rate has dropped continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment as mentioned in this paper.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.

9,661 citations