scispace - formally typeset
Search or ask a question
Author

Aaron I. Packman

Bio: Aaron I. Packman is an academic researcher from Northwestern University. The author has contributed to research in topics: Hyporheic zone & Sediment. The author has an hindex of 48, co-authored 173 publications receiving 8194 citations. Previous affiliations of Aaron I. Packman include Drexel University & Ben-Gurion University of the Negev.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors combine geophysics, microbial ecology and organic geochemistry to show geophysical opportunity and microbial capacity to enhance the net heterotrophy in streams, rivers and estuaries.
Abstract: Rivers may be efficient environments for metabolizing terrestrial organic carbon that was previously thought to be recalcitrant, owing to pockets that provide geophysical opportunities by retaining material for longer, and to the adaptation of microbial communities, which has enabled them to exploit the energy that escapes upstream ecosystems. Metabolism of terrestrial organic carbon in freshwater ecosystems is responsible for a large amount of carbon dioxide outgassing to the atmosphere, in contradiction to the conventional wisdom that terrestrial organic carbon is recalcitrant and contributes little to the support of aquatic metabolism. Here, we combine recent findings from geophysics, microbial ecology and organic geochemistry to show geophysical opportunity and microbial capacity to enhance the net heterotrophy in streams, rivers and estuaries. We identify hydrological storage and retention zones that extend the residence time of organic carbon during downstream transport as geophysical opportunities for microorganisms to develop as attached biofilms or suspended aggregates, and to metabolize organic carbon for energy and growth. We consider fluvial networks as meta-ecosystems to include the acclimation of microbial communities in downstream ecosystems that enable them to exploit energy that escapes from upstream ecosystems, thereby increasing the overall energy utilization at the network level.

1,246 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hypheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to watershed scale.
Abstract: Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.

644 citations

Journal ArticleDOI
TL;DR: It is proposed that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration.
Abstract: Biofilm cells are less susceptible to antimicrobials than their planktonic counterparts. While this phenomenon is multifactorial, the ability of the matrix to reduce antibiotic penetration into the biofilm is thought to be of limited importance studies suggest that antibiotics move fairly rapidly through biofilms. In this study, we monitored the transport of two clinically relevant antibiotics, tobramycin and ciprofloxacin, into non-mucoid Pseudomonas aeruginosa biofilms. To our surprise, we found that the positively charged antibiotic tobramycin is sequestered to the biofilm periphery, while the neutral antibiotic ciprofloxacin readily penetrated. We provide evidence that tobramycin in the biofilm periphery both stimulated a localized stress response and killed bacteria in these regions but not in the underlying biofilm. Although it is unclear which matrix component binds tobramycin, its penetration was increased by the addition of cations in a dose-dependent manner, which led to increased biofilm death. These data suggest that ionic interactions of tobramycin with the biofilm matrix limit its penetration. We propose that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration.

355 citations

Journal ArticleDOI
TL;DR: In this article, temporary storage of solutes in streams is often controlled by flow-induced uptake in hyporheic zones, which accounts for the tails that are generally observed following the passage of a stream.
Abstract: [1] Temporary storage of solutes in streams is often controlled by flow-induced uptake in hyporheic zones. This phenomenon accounts for the tails that are generally observed following the passage o ...

274 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined solute exchange with gravel streambeds under a wide range of stream flow conditions, indicating that there was considerable turbulent coupling of stream and pore water flows and the presence of bedforms produced additional exchange under all flow conditions.
Abstract: Stream-subsurface exchange processes are important because of their role in controlling the transport of contaminants and ecologically relevant substances in streams. Laboratory flume experiments were conducted to examine solute exchange with gravel streambeds. Two morphologies were studied: flat beds and beds covered by dune-shaped bedforms. High rates of exchange were observed with flat beds under a wide range of stream flow conditions, indicating that there was considerable turbulent coupling of stream and pore water flows. The presence of bedforms produced additional exchange under all flow conditions. The exchange with bedforms could be represented well by considering solute flux caused by bedform-induced advective pumping. Pumping exchange was enhanced by inertial effects, including non-Darcy flow and turbulent diffusion. For the flat bed case, dye injections showed that exchange also occurred by a combination of advective pore water flow and turbulent diffusion near the stream-subsurface interface. The relative effects of advective and diffusive transport processes could not be separated due to the complex nature of the induced flows in the gravel bed. However, exchange was found to scale with the square of the stream Reynolds number in all cases. Comparison of these results with those obtained with coarser and finer sediments demonstrated that the exchange rate is also proportional to the square of the characteristic bed sediment size. These scaling relationships can be used to improve interpretation of solute transport observed in natural rivers.

262 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: The role of lakes in carbon cycling and global climate, examine the mechanisms influencing carbon pools and transformations in lakes, and discuss how the metabolism of carbon in the inland waters is likely to change in response to climate.
Abstract: We explore the role of lakes in carbon cycling and global climate, examine the mechanisms influencing carbon pools and transformations in lakes, and discuss how the metabolism of carbon in the inland waters is likely to change in response to climate. Furthermore, we project changes as global climate change in the abundance and spatial distribution of lakes in the biosphere, and we revise the estimate for the global extent of carbon transformation in inland waters. This synthesis demonstrates that the global annual emissions of carbon dioxide from inland waters to the atmosphere are similar in magnitude to the carbon dioxide uptake by the oceans and that the global burial of organic carbon in inland water sediments exceeds organic carbon sequestration on the ocean floor. The role of inland waters in global carbon cycling and climate forcing may be changed by human activities, including construction of impoundments, which accumulate large amounts of carbon in sediments and emit large amounts of methane to the atmosphere. Methane emissions are also expected from lakes on melting permafrost. The synthesis presented here indicates that (1) inland waters constitute a significant component of the global carbon cycle, (2) their contribution to this cycle has significantly changed as a result of human activities, and (3) they will continue to change in response to future climate change causing decreased as well as increased abundance of lakes as well as increases in the number of aquatic impoundments.

2,140 citations

Journal ArticleDOI
TL;DR: The terrestrial biosphere is assumed to take up most of the carbon on land, but it is becoming clear that inland waters process large amounts of organic carbon and must be considered in strategies to mitigate climate change as mentioned in this paper.
Abstract: The terrestrial biosphere is assumed to take up most of the carbon on land. However, it is becoming clear that inland waters process large amounts of organic carbon and must be considered in strategies to mitigate climate change.

1,280 citations

Journal ArticleDOI
TL;DR: In this article, the authors combine geophysics, microbial ecology and organic geochemistry to show geophysical opportunity and microbial capacity to enhance the net heterotrophy in streams, rivers and estuaries.
Abstract: Rivers may be efficient environments for metabolizing terrestrial organic carbon that was previously thought to be recalcitrant, owing to pockets that provide geophysical opportunities by retaining material for longer, and to the adaptation of microbial communities, which has enabled them to exploit the energy that escapes upstream ecosystems. Metabolism of terrestrial organic carbon in freshwater ecosystems is responsible for a large amount of carbon dioxide outgassing to the atmosphere, in contradiction to the conventional wisdom that terrestrial organic carbon is recalcitrant and contributes little to the support of aquatic metabolism. Here, we combine recent findings from geophysics, microbial ecology and organic geochemistry to show geophysical opportunity and microbial capacity to enhance the net heterotrophy in streams, rivers and estuaries. We identify hydrological storage and retention zones that extend the residence time of organic carbon during downstream transport as geophysical opportunities for microorganisms to develop as attached biofilms or suspended aggregates, and to metabolize organic carbon for energy and growth. We consider fluvial networks as meta-ecosystems to include the acclimation of microbial communities in downstream ecosystems that enable them to exploit energy that escapes from upstream ecosystems, thereby increasing the overall energy utilization at the network level.

1,246 citations