scispace - formally typeset
Search or ask a question
Author

Aaron J. Miller

Bio: Aaron J. Miller is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Photon & Detector. The author has an hindex of 33, co-authored 100 publications receiving 4591 citations. Previous affiliations of Aaron J. Miller include National Institute of Standards and Technology & Columbia University.


Papers
More filters
Journal ArticleDOI
TL;DR: The fabrication and evaluation of a fiber-coupled, photon-number-resolving TES detector optimized for absorption at 1550 and 1310 nm wavelengths is described, which to the authors' knowledge is the highest system detection efficiency reported for a near-infrared single-photon detector.
Abstract: Single-photon detectors operating at visible and near-infrared wavelengths with high detection efficiency and low noise are a requirement for many quantum-information applications. Superconducting transition-edge sensors (TESs) are capable of detecting visible and near-infrared light at the single-photon level and are capable of discriminating between one-and two-photon absorption events; however these capabilities place stringent design requirements on the TES heat capacity, thermometry, and optical detection efficiency. We describe the fabrication and evaluation of a fiber-coupled, photon-number-resolving TES detector optimized for absorption at 1550 and 1310 nm wavelengths. The measured system detection efficiency at 1556 nm is 95 %±2 %, which to our knowledge is the highest system detection efficiency reported for a near-infrared single-photon detector.Work of US government: not subject to US copyright

757 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a source of entangled photons that violates a Bell inequality free of the fair sampling assumption, by over 7 standard deviations, and demonstrate enough overhead to eventually perform a fully loophole-free test of local realism.
Abstract: We present a source of entangled photons that violates a Bell inequality free of the ``fair-sampling'' assumption, by over 7 standard deviations. This violation is the first reported experiment with photons to close the detection loophole, and we demonstrate enough ``efficiency'' overhead to eventually perform a fully loophole-free test of local realism. The entanglement quality is verified by maximally violating additional Bell tests, testing the upper limit of quantum correlations. Finally, we use the source to generate ``device-independent'' private quantum random numbers at rates over 4 orders of magnitude beyond previous experiments.

445 citations

Journal ArticleDOI
TL;DR: In this article, the use of superconducting transition edge sensors for the wideband detection of individual photons from the mid infrared (IR), through the optical, and into the far ultraviolet (UV) was demonstrated.
Abstract: We have demonstrated the use of superconducting transition edge sensors for the wide-band detection of individual photons from the mid infrared (IR), through the optical, and into the far ultraviolet (UV). These tungsten transition edge sensors are squares about 18 μm on a side and detect single photon events above a threshold of 0.3 eV (4 μm wavelength), with an energy resolution of 0.15 eV full width at half maximum, and with a risetime (falltime) of .5 μs (60 μs). The calibration data extend up to the UV cutoff of the fiber optic feed at 3.5 eV (350 nm).

343 citations

Journal ArticleDOI
TL;DR: In this article, a superconducting transition-edge sensor microcalorimeter was used to measure the photon-number distribution of a weak pulsed-laser source at 1550 nm.
Abstract: We have demonstrated a system capable of directly measuring the photon-number state of a single pulse of light using a superconducting transition-edge sensor microcalorimeter. We verify the photon-number distribution of a weak pulsed-laser source at 1550 nm. Such single-photon metrology at telecommunication wavelengths provides the foundation for ensuring the security of photon sources used in implementations of quantum cryptography. Additionally, this system has the lowest noise equivalent power of any single-photon detector and combines high efficiency near-infrared photon counting with the ability to resolve multiphoton absorption events.

293 citations

Journal ArticleDOI
TL;DR: In this paper, a fiber-coupled, noise-free, photon-number-resolving transition-edge sensor with 88% efficiency at 1550 nm was presented.
Abstract: High-efficiency optical detectors that can determine the number of photons in a pulse of monochromatic light have applications in a variety of physics studies, including post-selection-based entanglement protocols for linear optics quantum computing and experiments that simultaneously close the detection and communication loopholes of Bell's inequalities. Here we report on our demonstration of fiber-coupled, noise-free, photon-number-resolving transition-edge sensors with 88% efficiency at 1550 nm. The efficiency of these sensors could be made even higher at any wavelength in the visible and near-infrared spectrum without resulting in a higher dark-count rate or degraded photon-number resolution.

253 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: An overview of the status of the terahertz technology, its uses and its future prospects are presented in this article, with a focus on the use of the waveband in a wide range of applications.
Abstract: Research into terahertz technology is now receiving increasing attention around the world, and devices exploiting this waveband are set to become increasingly important in a very diverse range of applications. Here, an overview of the status of the technology, its uses and its future prospects are presented.

5,512 citations

Journal ArticleDOI
TL;DR: Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete- variable, continuous-variable, and distributed-phase-reference protocols).
Abstract: Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper's power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).

2,926 citations

Journal ArticleDOI
TL;DR: This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination.
Abstract: The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography, and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.

2,781 citations