scispace - formally typeset
Search or ask a question
Author

Ab Halim Abu Bakar

Other affiliations: Peninsular Malaysia
Bio: Ab Halim Abu Bakar is an academic researcher from University of Malaya. The author has contributed to research in topics: Electric power system & Fault (power engineering). The author has an hindex of 30, co-authored 139 publications receiving 3683 citations. Previous affiliations of Ab Halim Abu Bakar include Peninsular Malaysia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a comprehensive overview on important issues affecting the distribution system as a result of PV penetration is presented, including voltage fluctuation, voltage rise, voltage balance, and harmonics and their effect on the system.
Abstract: The solar energy generation has grown significantly in the past years. The importance of PV penetration in power system as a major element of renewable energy source has seen it being widely used on a global scale. Despite its promising success, PV penetration presents various issues and its impact on the distribution system has to address for seamless integration in the power system. In this paper, a comprehensive overview on important issues affecting the distribution system as a result of PV penetration is presented. Pertinent issues such as voltage fluctuation, voltage rise, voltage balance, and harmonics and their effect on the system are discussed in details. The islanding issues, which are of critical importance to the stability and integrity of the system, are also thoroughly reviewed. Details on different islanding techniques – remote and local techniques and their advantage and disadvantages are shown. Therefore, this paper can provide useful information and serve as a reference for researchers and utility engineers on issues to be considered with regards to PV penetration.

403 citations

Journal ArticleDOI
TL;DR: In this paper, the impact of three major strategies for peak load shaving, namely demand side management (DSM), integration of energy storage system (ESS), and integration of electric vehicle (EV) to the grid has been discussed in detail.
Abstract: In this study, a significant literature review on peak load shaving strategies has been presented. The impact of three major strategies for peak load shaving, namely demand side management (DSM), integration of energy storage system (ESS), and integration of electric vehicle (EV) to the grid has been discussed in detail. Discussion on possible challenges and future research directions for each type of the strategy has also been included in this review. For the energy storage system, different technologies used for peak load shaving purpose, which include their methods of operation and control have been elaborated further. Finally, the sizing of the ESS storage system is discussed. For the demand side management system, various management methods and challenges associated with DSM implementation have been thoroughly explained. A detailed discussion on the electric vehicle strategy has also been included in the review, which considers the integration, control and operation techniques for implementing the peak load shaving.

303 citations

Journal ArticleDOI
TL;DR: In this article, a new algorithm for distributed generator placement and sizing for distribution systems based on a novel index is proposed, which is developed considering stable node voltages referred as power stability index (PSI), a new analytical approach is adopted to visualize the impact of DG on system losses, voltage profile and voltage stability.

271 citations

Journal ArticleDOI
01 Mar 2014-Energy
TL;DR: The effectiveness of the proposed method is presented in terms of reduction in power system losses, maximization of system loadability and voltage quality improvement and HPSO (hybrid particle swarm optimization) algorithm is proposed in this paper.

252 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of solar energy technologies and address the safety, health and environmental (SHE) impact of these technologies to the sustainability of human activities, and recommend the possible ways to reduce the effect of potential hazards of widespread use of such technologies.
Abstract: Solar energy is one of the cleanest forms of energy sources and considered as a green source of energy. Solar energy benefit ranges from low carbon emission, no fossil fuel requirement, long term solar resources, less payback time and other. However like other power generation sources, solar energy has also some Safety, Health and Environmental (SHE) concerns. This paper presents the overview of solar energy technologies and addresses the SHE impact of solar energy technologies to the sustainability of human activities. This paper will also recommend the possible ways to reduce the effect of potential hazards of widespread use of solar energy technologies.

216 citations


Cited by
More filters
09 Mar 2012
TL;DR: Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems as mentioned in this paper, and they have been widely used in computer vision applications.
Abstract: Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods. † Correspondence: Chung-Ming Kuan, Institute of Economics, Academia Sinica, 128 Academia Road, Sec. 2, Taipei 115, Taiwan; ckuan@econ.sinica.edu.tw. †† I would like to express my sincere gratitude to the editor, Professor Steven Durlauf, for his patience and constructive comments on early drafts of this entry. I also thank Shih-Hsun Hsu and Yu-Lieh Huang for very helpful suggestions. The remaining errors are all mine.

2,069 citations

Journal ArticleDOI
TL;DR: This work provides a comprehensive overview of fundamental principles that underpin blockchain technologies, such as system architectures and distributed consensus algorithms, and discusses opportunities, potential challenges and limitations for a number of use cases, ranging from emerging peer-to-peer energy trading and Internet of Things applications, to decentralised marketplaces, electric vehicle charging and e-mobility.
Abstract: Blockchains or distributed ledgers are an emerging technology that has drawn considerable interest from energy supply firms, startups, technology developers, financial institutions, national governments and the academic community. Numerous sources coming from these backgrounds identify blockchains as having the potential to bring significant benefits and innovation. Blockchains promise transparent, tamper-proof and secure systems that can enable novel business solutions, especially when combined with smart contracts. This work provides a comprehensive overview of fundamental principles that underpin blockchain technologies, such as system architectures and distributed consensus algorithms. Next, we focus on blockchain solutions for the energy industry and inform the state-of-the-art by thoroughly reviewing the literature and current business cases. To our knowledge, this is one of the first academic, peer-reviewed works to provide a systematic review of blockchain activities and initiatives in the energy sector. Our study reviews 140 blockchain research projects and startups from which we construct a map of the potential and relevance of blockchains for energy applications. These initiatives were systematically classified into different groups according to the field of activity, implementation platform and consensus strategy used. 1 Opportunities, potential challenges and limitations for a number of use cases are discussed, ranging from emerging peer-to-peer (P2P) energy trading and Internet of Things (IoT) applications, to decentralised marketplaces, electric vehicle charging and e-mobility. For each of these use cases, our contribution is twofold: first, in identifying the technical challenges that blockchain technology can solve for that application as well as its potential drawbacks, and second in briefly presenting the research and industrial projects and startups that are currently applying blockchain technology to that area. The paper ends with a discussion of challenges and market barriers the technology needs to overcome to get past the hype phase, prove its commercial viability and finally be adopted in the mainstream.

1,399 citations

Journal ArticleDOI
TL;DR: This survey presented a comprehensive investigation of PSO, including its modifications, extensions, and applications to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology.
Abstract: Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms.

836 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive overview of soiling problems, primarily those associated with sand and combined dust-moisture conditions that are inherent to many of the most solar-rich geographic locations worldwide.
Abstract: The energy delivery of a solar-energy system is generally associated with the sun's available irradiance and spectral content, as well as a variety of environmental and climatic factors and inherent system and component performances. However, other external factors relating to geographical location and conditions can have even greater impacts on system performance. Among these, soiling is a commonly overlooked or underestimated issue that can be a showstopper for the viability of a solar installation. This paper provides a comprehensive overview of soiling problems, primarily those associated with “dust” (sand) and combined dust–moisture conditions that are inherent to many of the most solar-rich geographic locations worldwide. We review and evaluate key contributions to the understanding, performance effects, and mitigation of these problems. These contributions span a technical history of almost seven decades. We also present an inclusive literature survey/assessment. The focus is on both transmissive surfaces (e.g., those used for flat-plate photovoltaics or for concentrating lenses) and reflective surfaces (e.g., mirrors or heliostats for concentrating power systems).

696 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the sustainability and environmental performance of PV-based electricity generation systems by conducting a thorough review of the life cycle assessment (LCA) studies of five common photovoltaic (PV) systems, i.e., mono-crystalline (mono-Si), multi-crystaline (multi-Si) multi-Si, amorphous silicon (aSi), CdTe thin film (CdTe) and CIS thin film, and some advanced PV systems.
Abstract: This paper aims to examine the sustainability and environmental performance of PV-based electricity generation systems by conducting a thorough review of the life cycle assessment (LCA) studies of five common photovoltaic (PV) systems, i.e., mono-crystalline (mono-Si), multi-crystalline (multi-Si), amorphous silicon (a-Si), CdTe thin film (CdTe) and CIS thin film (CIS), and some advanced PV systems. The results show that, among the five common PV systems, the CdTe PV system presents the best environmental performance in terms of energy payback time (EPBT) and greenhouse gases (GHG) emission rate due to its low life-cycle energy requirement and relatively high conversion efficiency. Meanwhile, the mono-Si PV system demonstrates the worst because of its high energy intensity during the solar cells’ production process. The EPBT and GHG emission rate of thin film PV systems are within the range of 0.75–3.5 years and 10.5–50 g CO 2 -eq./kW h, respectively. In general, the EPBT of mono-Si PV systems range from 1.7 to 2.7 years with GHG emission rate from 29 to 45 g CO 2 -eq./kW h, which is an order of magnitude smaller than that of fossil-based electricity. This paper also reviews the EPBT and GHG emission rates of some advanced PV systems, such as high-concentration, heterojunction and dye-sensitized technologies. The EBPT of high-concentration PV system is lower, ranging from 0.7 to 2.0 years, but the CO 2 emission rate of dye-sensitized PV system is higher than the ones of other PV systems at the moment. The LCA results show that PV technologies are already proved to be very sustainable and environmental-friendly in the state of the art. With the emerging of new manufacturing technologies, the environmental performance of PV technologies is expected to be further improved in the near future. In addition, considering the existing limitations in the previous LCA studies, a few suggestions are recommended.

564 citations