scispace - formally typeset
Search or ask a question
Author

Abba Malina

Other affiliations: Jewish General Hospital
Bio: Abba Malina is an academic researcher from McGill University. The author has contributed to research in topics: Homologous recombination & DNA repair. The author has an hindex of 18, co-authored 23 publications receiving 2462 citations. Previous affiliations of Abba Malina include Jewish General Hospital.

Papers
More filters
Journal ArticleDOI
18 Mar 2004-Nature
TL;DR: It is shown that Akt promotes tumorigenesis and drug resistance by disrupting apoptosis, and that disruption of Akt signalling using the mTOR inhibitor rapamycin reverses chemoresistance in lymphomas expressing Akt, but not in those with other apoptotic defects.
Abstract: Evading apoptosis is considered to be a hallmark of cancer, because mutations in apoptotic regulators invariably accompany tumorigenesis. Many chemotherapeutic agents induce apoptosis, and so disruption of apoptosis during tumour evolution can promote drug resistance. For example, Akt is an apoptotic regulator that is activated in many cancers and may promote drug resistance in vitro. Nevertheless, how Akt disables apoptosis and its contribution to clinical drug resistance are unclear. Using a murine lymphoma model, we show that Akt promotes tumorigenesis and drug resistance by disrupting apoptosis, and that disruption of Akt signalling using the mTOR inhibitor rapamycin reverses chemoresistance in lymphomas expressing Akt, but not in those with other apoptotic defects. eIF4E, a translational regulator that acts downstream of Akt and mTOR, recapitulates Akt's action in tumorigenesis and drug resistance, but is unable to confer sensitivity to rapamycin and chemotherapy. These results establish Akt signalling through mTOR and eIF4E as an important mechanism of oncogenesis and drug resistance in vivo, and reveal how targeting apoptotic programmes can restore drug sensitivity in a genotype-dependent manner.

949 citations

Journal ArticleDOI
TL;DR: Insight is provided into how eIF4E contributes to tumorigenesis and a level of translational control that may be suitable for therapeutic intervention is pinpointed.
Abstract: Genetically engineered mouse models are powerful tools for studying cancer genes and validating targets for cancer therapy. We previously used a mouse lymphoma model to demonstrate that the translation initiation factor eIF4E is a potent oncogene in vivo. Using the same model, we now show that the oncogenic activity of eIF4E correlates with its ability to activate translation and become phosphorylated on Ser 209. Furthermore, constitutively activated MNK1, an eIF4E Ser 209 kinase, promotes tumorigenesis in a manner similar to eIF4E, and a dominant-negative MNK mutant inhibits the in vivo proliferation of tumor cells driven by mutations that deregulate translation. Phosphorylated eIF4E promotes tumorigenesis primarily by suppressing apoptosis and, accordingly, the anti-apoptotic protein Mcl-1 is one target of both phospho-eIF4E and MNK1 that contributes to tumor formation. Our results provide insight into how eIF4E contributes to tumorigenesis and pinpoint a level of translational control that may be suitable for therapeutic intervention.

449 citations

Journal ArticleDOI
TL;DR: It is demonstrated that loss of TSC2 in the Eμ-myc murine lymphoma model leads to mTORC1 activation and accelerated oncogenesis caused by a defective apoptotic program despite compromised AKT phosphorylation, and identified myeloid cell leukemia sequence 1 (Mcl-1), a bcl-2 like family member, as a translationally regulated genetic determinant of m TORC1-dependent survival.
Abstract: Activation of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is a frequent occurrence in human cancers and a major promoter of chemotherapeutic resistance. Inhibition of one downstream target in this pathway, mTORC1, has shown potential to improve chemosensitivity. However, the mechanisms and genetic modifications that confer sensitivity to mTORC1 inhibitors remain unclear. Here, we demonstrate that loss of TSC2 in the Eμ-myc murine lymphoma model leads to mTORC1 activation and accelerated oncogenesis caused by a defective apoptotic program despite compromised AKT phosphorylation. Tumors from Tsc2+/−Eμ-Myc mice underwent rapid apoptosis upon blockade of mTORC1 by rapamycin. We identified myeloid cell leukemia sequence 1 (Mcl-1), a bcl-2 like family member, as a translationally regulated genetic determinant of mTORC1-dependent survival. Our results indicate that the extent by which rapamycin can modulate expression of Mcl-1 is an important feature of the rapamycin response.

253 citations

Journal ArticleDOI
TL;DR: The results establish Cas9 genome editing as a powerful and practical approach for positive in situ genetic screens for targeted gene disruption positive selection assays.
Abstract: RNAi combined with next-generation sequencing has proven to be a powerful and cost-effective genetic screening platform in mammalian cells. Still, this technology has its limitations and is incompatible with in situ mutagenesis screens on a genome-wide scale. Using p53 as a proof-of-principle target, we readapted the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR associated 9) genome-editing system to demonstrate the feasibility of this methodology for targeted gene disruption positive selection assays. By using novel "all-in-one" lentiviral and retroviral delivery vectors heterologously expressing both a codon-optimized Cas9 and its synthetic guide RNA (sgRNA), we show robust selection for the CRISPR-modified Trp53 locus following drug treatment. Furthermore, by linking Cas9 expression to GFP fluorescence, we use an "all-in-one" system to track disrupted Trp53 in chemoresistant lymphomas in the Eμ-myc mouse model. Deep sequencing analysis of the tumor-derived endogenous Cas9-modified Trp53 locus revealed a wide spectrum of mutants that were enriched with seemingly limited off-target effects. Taken together, these results establish Cas9 genome editing as a powerful and practical approach for positive in situ genetic screens.

153 citations

Journal ArticleDOI
02 Oct 2014-PLOS ONE
TL;DR: In vitro analysis of target site recognition revealed that interactions between the 5′ end of the guide and PAM-distal target sequences are necessary to efficiently engage Cas9 nucleolytic activity, providing an explanation for why off-target editing is significantly lower than expected from ChIP-seq data.
Abstract: The clustered regularly interspaced short palindromic repeat (CRISPR)-associated enzyme Cas9 is an RNA-guided nuclease that has been widely adapted for genome editing in eukaryotic cells. However, the in vivo target specificity of Cas9 is poorly understood and most studies rely on in silico predictions to define the potential off-target editing spectrum. Using chromatin immunoprecipitation followed by sequencing (ChIP-seq), we delineate the genome-wide binding panorama of catalytically inactive Cas9 directed by two different single guide (sg) RNAs targeting the Trp53 locus. Cas9:sgRNA complexes are able to load onto multiple sites with short seed regions adjacent to 5′NGG3′ protospacer adjacent motifs (PAM). Yet among 43 ChIP-seq sites harboring seed regions analyzed for mutational status, we find editing only at the intended on-target locus and one off-target site. In vitro analysis of target site recognition revealed that interactions between the 5′ end of the guide and PAM-distal target sequences are necessary to efficiently engage Cas9 nucleolytic activity, providing an explanation for why off-target editing is significantly lower than expected from ChIP-seq data.

116 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Both the upstream components of the signaling pathway(s) that activates mammalian TOR (mTOR) and the downstream targets that affect protein synthesis are described.
Abstract: The evolutionarily conserved checkpoint protein kinase, TOR (target of rapamycin), has emerged as a major effector of cell growth and proliferation via the regulation of protein synthesis. Work in the last decade clearly demonstrates that TOR controls protein synthesis through a stunning number of downstream targets. Some of the targets are phosphorylated directly by TOR, but many are phosphorylated indirectly. In this review, we summarize some recent developments in this fast-evolving field. We describe both the upstream components of the signaling pathway(s) that activates mammalian TOR (mTOR) and the downstream targets that affect protein synthesis. We also summarize the roles of mTOR in the control of cell growth and proliferation, as well as its relevance to cancer and synaptic plasticity.

4,074 citations

Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: It is found that the levels of the primary or mature microRNAs derived from the mir-17–92 locus are often substantially increased in human B-cell lymphomas, and the cluster is implicate as a potential human oncogene.
Abstract: To date, more than 200 microRNAs have been described in humans; however, the precise functions of these regulatory, non-coding RNAs remains largely obscure. One cluster of microRNAs, the mir-17-92 polycistron, is located in a region of DNA that is amplified in human B-cell lymphomas. Here we compared B-cell lymphoma samples and cell lines to normal tissues, and found that the levels of the primary or mature microRNAs derived from the mir-17-92 locus are often substantially increased in these cancers. Enforced expression of the mir-17-92 cluster acted with c-myc expression to accelerate tumour development in a mouse B-cell lymphoma model. Tumours derived from haematopoietic stem cells expressing a subset of the mir-17-92 cluster and c-myc could be distinguished by an absence of apoptosis that was otherwise prevalent in c-myc-induced lymphomas. Together, these studies indicate that non-coding RNAs, specifically microRNAs, can modulate tumour formation, and implicate the mir-17-92 cluster as a potential human oncogene.

3,735 citations

Journal ArticleDOI
TL;DR: Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt.
Abstract: In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.

3,641 citations

Journal ArticleDOI
22 Oct 2015-Cell
TL;DR: In this paper, the authors characterized Cpf1, a putative class 2 CRISPR effector, which is a single RNA-guided endonuclease lacking tracrRNA and utilizes a T-rich protospacer-adjacent motif.

3,436 citations

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: Recent advances in understanding of the molecular structures and biochemical functions of the translation initiation machinery are described and key strategies that mediate general or gene-specific translational control are summarized, particularly in mammalian systems.

2,899 citations