scispace - formally typeset
Search or ask a question
Author

Abbas Afshar

Bio: Abbas Afshar is an academic researcher from Iran University of Science and Technology. The author has contributed to research in topics: Ant colony optimization algorithms & Optimization problem. The author has an hindex of 35, co-authored 163 publications receiving 3762 citations. Previous affiliations of Abbas Afshar include Purdue University & Amirkabir University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The honey-bees mating optimization algorithm (HBMO) is presented and tested with few benchmark examples consisting of highly non-linear constrained and/or unconstrained real-valued mathematical models and results obtained are promising and compare well with the results of other well-known heuristic approaches.
Abstract: Over the last decade, evolutionary and meta-heuristic algorithms have been extensively used as search and optimization tools in various problem domains, including science, commerce, and engineering. Their broad applicability, ease of use, and global perspective may be considered as the primary reason for their success. The honey-bees mating process may also be considered as a typical swarm-based approach to optimization, in which the search algorithm is inspired by the process of real honey-bees mating. In this paper, the honey-bees mating optimization algorithm (HBMO) is presented and tested with few benchmark examples consisting of highly non-linear constrained and/or unconstrained real-valued mathematical models. The performance of the algorithm is quite comparable with the results of the well-developed genetic algorithm. The HBMO algorithm is also applied to the operation of a single reservoir with 60 periods with the objective of minimizing the total square deviation from target demands. Results obtained are promising and compare well with the results of other well-known heuristic approaches.

340 citations

Journal ArticleDOI
TL;DR: The honey-bee mating optimization (HBMO) algorithm is presented and tested with a nonlinear, continuous constrained problem with continuous decision and state variables to demonstrate the efficiency of the algorithm in handling the single reservoir operation optimization problems.
Abstract: In recent years, evolutionary and meta-heuristic algorithms have been extensively used as search and optimization tools in various problem domains, including science, commerce, and engineering. Ease of use, broad applicability, and global perspective may be considered as the primary reason for their success. The honey-bee mating process has been considered as a typical swarm-based approach to optimization, in which the search algorithm is inspired by the process of real honey-bee mating. In this paper, the honey-bee mating optimization (HBMO) algorithm is presented and tested with a nonlinear, continuous constrained problem with continuous decision and state variables to demonstrate the efficiency of the algorithm in handling the single reservoir operation optimization problems. It is shown that the performance of the model is quite comparable with the results of the well-developed traditional linear programming (LP) solvers such as LINGO 8.0. Results obtained are quite promising and compare well with the final results of the other approach.

287 citations

Journal ArticleDOI
TL;DR: In this article, a fuzzy multi-criteria decision making process using the well known Technique for Order Preference by Similarity of Ideal Solution (TOPSIS) method in both deterministic and uncertain environments is presented.
Abstract: Water resource systems, with an abundance of project purposes and resource values, are subject to conflicting policy, planning, and management decisions. Multi-criteria decision making methods (MCDM) provide a framework to help water managers identify critical issues, attach relative priorities to those issues, select best compromise alternatives, and facilitate communication to gain general acceptance. This paper addresses a method that incorporates several system factors/components within a general framework for providing a holistic analysis of the problems and comprehensive evaluation of the related mitigation/adaptation measures and policy responses. The method accounts for uncertainties in both the quantification and importance of objectives in the ranking process. The proposed fuzzy multi-criteria decision making process uses the well known Technique for Order Preference by Similarity of Ideal Solution (TOPSIS) method in both deterministic and uncertain environments. The performance of the proposed approach to a real water resource management problem in Iran is illustrated. Results show that the model may be used in a large-scale multi-level assessment process. Ranks of the alternatives are presented using deterministic and fuzzy based models.

141 citations

Journal ArticleDOI
TL;DR: It is shown that the real-time operation of the three reservoir system with the proposed approach may significantly outperform the common implicit stochastic optimization approach.
Abstract: Reservoir operation rules are intended to help an operator so that water releases and storage capacities are in the best interests of the system objectives. In multi-reservoir systems, a large number of feasible operation policies may exist. System engineering and optimization techniques can assist in identifying the most desirable of those feasible operation policies. This paper presents and tests a set of operation rules for a multi-reservoir system, employing a multi-swarm version of particle swarm optimization (MSPSO) in connection with the well-known HEC-ResPRM simulation model in a parameterization–simulation–optimization (parameterization SO) approach. To improve the performance of the standard particle swarm optimization algorithm, this paper incorporates a new strategic mechanism called multi-swarm into the algorithm. Parameters of the rule are estimated by employing a parameterization–simulation–optimization approach, in which a full-scale simulation model evaluates the objective function value for each trial set of parameter values proposed with an efficient version of the particle swarm optimization algorithm. The usefulness of the MSPSO in developing reservoir operation policies is examined by using the existing three-reservoir system of Mica, Libby, and Grand Coulee as part of the Columbia River Basin development. Results of the rule-based reservoir operation are compared with those of HEC-ResPRM. It is shown that the real-time operation of the three reservoir system with the proposed approach may significantly outperform the common implicit stochastic optimization approach.

139 citations

Journal ArticleDOI
TL;DR: In this article, a system dynamics approach to construction project risk management is presented, including risk analysis and response process, where fuzzy logic is integrated into system dynamics modelling structure and risk magnitudes are defined by a fuzzy logic based risk magnitude prediction system.
Abstract: The complex structure of construction project risks arises from their internal and external interactions with their dynamic nature throughout the life cycle of the project. A system dynamics (SD) approach to construction project risk management is presented, including risk analysis and response process. Owing to the imprecise and uncertain nature of risks, fuzzy logic is integrated into system dynamics modelling structure. Risk magnitudes are defined by a fuzzy logic based risk magnitude prediction system. Zadeh's extension principle and interval arithmetic is employed in the SD simulation model to present the system outcomes considering uncertainties in the magnitude of risks resulting from the risk magnitude prediction system. The performance of the proposed method is assessed by employing the method in the risk management plan of a sample project. The impact of a sample risk is quantified and efficiency of different alternative response scenarios is assessed. The proposed approach supports different st...

113 citations


Cited by
More filters
01 Jan 2002

9,314 citations

Book
01 Jan 2001
TL;DR: This chapter discusses Decision-Theoretic Foundations, Game Theory, Rationality, and Intelligence, and the Decision-Analytic Approach to Games, which aims to clarify the role of rationality in decision-making.
Abstract: Preface 1. Decision-Theoretic Foundations 1.1 Game Theory, Rationality, and Intelligence 1.2 Basic Concepts of Decision Theory 1.3 Axioms 1.4 The Expected-Utility Maximization Theorem 1.5 Equivalent Representations 1.6 Bayesian Conditional-Probability Systems 1.7 Limitations of the Bayesian Model 1.8 Domination 1.9 Proofs of the Domination Theorems Exercises 2. Basic Models 2.1 Games in Extensive Form 2.2 Strategic Form and the Normal Representation 2.3 Equivalence of Strategic-Form Games 2.4 Reduced Normal Representations 2.5 Elimination of Dominated Strategies 2.6 Multiagent Representations 2.7 Common Knowledge 2.8 Bayesian Games 2.9 Modeling Games with Incomplete Information Exercises 3. Equilibria of Strategic-Form Games 3.1 Domination and Ratonalizability 3.2 Nash Equilibrium 3.3 Computing Nash Equilibria 3.4 Significance of Nash Equilibria 3.5 The Focal-Point Effect 3.6 The Decision-Analytic Approach to Games 3.7 Evolution. Resistance. and Risk Dominance 3.8 Two-Person Zero-Sum Games 3.9 Bayesian Equilibria 3.10 Purification of Randomized Strategies in Equilibria 3.11 Auctions 3.12 Proof of Existence of Equilibrium 3.13 Infinite Strategy Sets Exercises 4. Sequential Equilibria of Extensive-Form Games 4.1 Mixed Strategies and Behavioral Strategies 4.2 Equilibria in Behavioral Strategies 4.3 Sequential Rationality at Information States with Positive Probability 4.4 Consistent Beliefs and Sequential Rationality at All Information States 4.5 Computing Sequential Equilibria 4.6 Subgame-Perfect Equilibria 4.7 Games with Perfect Information 4.8 Adding Chance Events with Small Probability 4.9 Forward Induction 4.10 Voting and Binary Agendas 4.11 Technical Proofs Exercises 5. Refinements of Equilibrium in Strategic Form 5.1 Introduction 5.2 Perfect Equilibria 5.3 Existence of Perfect and Sequential Equilibria 5.4 Proper Equilibria 5.5 Persistent Equilibria 5.6 Stable Sets 01 Equilibria 5.7 Generic Properties 5.8 Conclusions Exercises 6. Games with Communication 6.1 Contracts and Correlated Strategies 6.2 Correlated Equilibria 6.3 Bayesian Games with Communication 6.4 Bayesian Collective-Choice Problems and Bayesian Bargaining Problems 6.5 Trading Problems with Linear Utility 6.6 General Participation Constraints for Bayesian Games with Contracts 6.7 Sender-Receiver Games 6.8 Acceptable and Predominant Correlated Equilibria 6.9 Communication in Extensive-Form and Multistage Games Exercises Bibliographic Note 7. Repeated Games 7.1 The Repeated Prisoners Dilemma 7.2 A General Model of Repeated Garnet 7.3 Stationary Equilibria of Repeated Games with Complete State Information and Discounting 7.4 Repeated Games with Standard Information: Examples 7.5 General Feasibility Theorems for Standard Repeated Games 7.6 Finitely Repeated Games and the Role of Initial Doubt 7.7 Imperfect Observability of Moves 7.8 Repeated Wines in Large Decentralized Groups 7.9 Repeated Games with Incomplete Information 7.10 Continuous Time 7.11 Evolutionary Simulation of Repeated Games Exercises 8. Bargaining and Cooperation in Two-Person Games 8.1 Noncooperative Foundations of Cooperative Game Theory 8.2 Two-Person Bargaining Problems and the Nash Bargaining Solution 8.3 Interpersonal Comparisons of Weighted Utility 8.4 Transferable Utility 8.5 Rational Threats 8.6 Other Bargaining Solutions 8.7 An Alternating-Offer Bargaining Game 8.8 An Alternating-Offer Game with Incomplete Information 8.9 A Discrete Alternating-Offer Game 8.10 Renegotiation Exercises 9. Coalitions in Cooperative Games 9.1 Introduction to Coalitional Analysis 9.2 Characteristic Functions with Transferable Utility 9.3 The Core 9.4 The Shapkey Value 9.5 Values with Cooperation Structures 9.6 Other Solution Concepts 9.7 Colational Games with Nontransferable Utility 9.8 Cores without Transferable Utility 9.9 Values without Transferable Utility Exercises Bibliographic Note 10. Cooperation under Uncertainty 10.1 Introduction 10.2 Concepts of Efficiency 10.3 An Example 10.4 Ex Post Inefficiency and Subsequent Oilers 10.5 Computing Incentive-Efficient Mechanisms 10.6 Inscrutability and Durability 10.7 Mechanism Selection by an Informed Principal 10.8 Neutral Bargaining Solutions 10.9 Dynamic Matching Processes with Incomplete Information Exercises Bibliography Index

3,569 citations

Journal ArticleDOI
TL;DR: A state-of-the-art literature survey is conducted to taxonomize the research on TOPSIS applications and methodologies and suggests a framework for future attempts in this area for academic researchers and practitioners.
Abstract: Multi-Criteria Decision Aid (MCDA) or Multi-Criteria Decision Making (MCDM) methods have received much attention from researchers and practitioners in evaluating, assessing and ranking alternatives across diverse industries. Among numerous MCDA/MCDM methods developed to solve real-world decision problems, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) continues to work satisfactorily across different application areas. In this paper, we conduct a state-of-the-art literature survey to taxonomize the research on TOPSIS applications and methodologies. The classification scheme for this review contains 266 scholarly papers from 103 journals since the year 2000, separated into nine application areas: (1) Supply Chain Management and Logistics, (2) Design, Engineering and Manufacturing Systems, (3) Business and Marketing Management, (4) Health, Safety and Environment Management, (5) Human Resources Management, (6) Energy Management, (7) Chemical Engineering, (8) Water Resources Management and (9) Other topics. Scholarly papers in the TOPSIS discipline are further interpreted based on (1) publication year, (2) publication journal, (3) authors' nationality and (4) other methods combined or compared with TOPSIS. We end our review paper with recommendations for future research in TOPSIS decision-making that is both forward-looking and practically oriented. This paper provides useful insights into the TOPSIS method and suggests a framework for future attempts in this area for academic researchers and practitioners.

1,571 citations

Journal ArticleDOI
TL;DR: A review of the current state of the art in computational optimization methods applied to renewable and sustainable energy can be found in this article, which offers a clear vision of the latest research advances in this field.
Abstract: Energy is a vital input for social and economic development. As a result of the generalization of agricultural, industrial and domestic activities the demand for energy has increased remarkably, especially in emergent countries. This has meant rapid grower in the level of greenhouse gas emissions and the increase in fuel prices, which are the main driving forces behind efforts to utilize renewable energy sources more effectively, i.e. energy which comes from natural resources and is also naturally replenished. Despite the obvious advantages of renewable energy, it presents important drawbacks, such as the discontinuity of generation, as most renewable energy resources depend on the climate, which is why their use requires complex design, planning and control optimization methods. Fortunately, the continuous advances in computer hardware and software are allowing researchers to deal with these optimization problems using computational resources, as can be seen in the large number of optimization methods that have been applied to the renewable and sustainable energy field. This paper presents a review of the current state of the art in computational optimization methods applied to renewable and sustainable energy, offering a clear vision of the latest research advances in this field.

1,394 citations