scispace - formally typeset
Search or ask a question
Author

Abdel Wahab M. Mahmoud

Bio: Abdel Wahab M. Mahmoud is an academic researcher from Cairo University. The author has contributed to research in topics: Salinity & Horticulture. The author has an hindex of 7, co-authored 18 publications receiving 170 citations.
Topics: Salinity, Horticulture, Chemistry, Bulb, Soil salinity

Papers
More filters
Journal ArticleDOI
21 Dec 2019-Agronomy
TL;DR: In this paper, the use of combined nano-micronutrients to ameliorate salinity stress in potato plants (Solanum tuberosum L) was investigated.
Abstract: Salinity stress is a severe environmental stress that affects plant growth and productivity of potato, a strategic crop moderately sensitive to saline soils. Limited studies are available on the use of combined nano-micronutrients to ameliorate salinity stress in potato plants (Solanum tuberosum L.). Two open field experiments were conducted in salt-affected sandy soil to investigate plant growth, physiology, and yield of potato in response to soil salinity stress under single or combined application of Zn, B, Si, and Zeolite nanoparticles. It was hypothesized that soil application of nanoparticles enhanced plant growth and yield by alleviating the adverse impact of soil salinity. In general, all the nano-treatments applications significantly increased plant height, shoot dry weight, number of stems per plant, leaf relative water content, leaf photosynthetic rate, leaf stomatal conductance, chlorophyll content, and tuber yield, as compared to the untreated control. Furthermore, soil application of these treatments increased the concentration of nutrients (N, P, K, Ca, Zn, and B) in plant tissues, leaf proline, and leaf gibberellic acid hormone (GA3) in addition to contents of protein, carbohydrates, and antioxidant enzymes (polyphenol oxidase (PPO) and peroxidase (POD) in tubers. Compared to other treatments, the combined application of nanoparticles showed the highest plant growth, physiological parameters, endogenous elements (N, P, K, Ca, Zn, and B) and the lowest concentration of leaf abscisic acid (ABA) and transpiration rate. The present findings suggest that soil addition of the aforementioned nanoparticles can be a promising approach to improving crop productivity in salt-affected soils.

96 citations

Journal ArticleDOI
TL;DR: This study shows that P. indica enhances the growth and yield of tomato plants under normal and salt stress conditions, opening up a window of opportunity for its application in desert agriculture.

83 citations

Journal ArticleDOI
01 Apr 2019
TL;DR: In this article, the effects of green synthesized nanoparticles (GNPs) of Zn and Fe oxides on plant growth traits, photosynthetic capacity and nutritional quality of red radish (cv. Champion), two open field experiments were organized based on RCBD with four replicates.
Abstract: In order to assess the effects of green synthesized nanoparticles (GNPs) of Zn and Fe oxides on plant growth traits, photosynthetic capacity and nutritional quality of red radish (cv. Champion), two open field experiments were organised based on RCBD with four replicates. Treatments included: chicken manure, foliar application of ZnO + FeO (GNPs at a rate of 60 and 50 ppm, respectively), chicken manure plus ZnO + FeO (GNPs). This study revealed that growth and yield of radish plants significantly increased by ZnO + FeO nanoparticles application. The maximum vegetative growth, leaf pigments and root quality (diameter and weight) were recorded in plants treated with ZnO + FeO (GNPs) alone or in combination with chicken manure. Furthermore, the combined application of chicken manure with ZnO and FeO significantly improved the concentration of anthocyanins, phenols, tannins, flavonoids, crude protein and carbohydrates contents in radish root than single treatment. Similar trends were noted in photosynthesis rate, water use efficiency and values of Zn and Fe contents. In addition, health risk index for Zn and Fe were less than 1, which indicated to red radish plants supplied with ZnO and FeO GNPs were free of risks on human health. It was concluded that combination between chicken manure and ZnO + FeO GNPs can be considered as appropriate strategy for improving yield and nutritional status of red radish.

54 citations

Journal ArticleDOI
TL;DR: In this paper, a field trial was done through 2018 and 2019 seasons to scrutinize the consequence of nano N, P and K elements application individual or in combination and nano zeolite loaded nitrogen or not on a sage plant grown under water stress compared to the commercial NPK fertilisers at new reclaimed land.
Abstract: Abstract The lucrative approach of nanotechnology and it´s utilizing in the agricultural sector is prospective. Based on this fact a field trial was done through 2018 and 2019 seasons to scrutinize the consequence of nano N, P and K elements application individual or in combination and nano zeolite loaded nitrogen or not on a sage plant grown under water stress compared to the commercial NPK fertilisers at new reclaimed land. Nano NPK elements were prepared from their precursor as potassium persulfate (K2S2O8), calcium phosphate (Ca (H2PO4)2·H2O) and salt NH4NO3, urea (CO (NH2)2), while nano zeolite was hydrothermally synthesized. Water stress was applied via drip irrigation with 15 days intervals. The data revealed that, nanofertilisers and nano-zeolites had a superior effects on the plant itself under stress conditions with concern on nano-zeolite loaded nitrogen and nano-NPK mixture as well which boosted vegetative growth (plant height, branches number, yield fresh weight, health index, herb fresh and dry weight, leaf area and oil yield), also improved photosynthetic rate, stomatal conductance, CO2 concentration, water use efficiency and relative water content. The chemical composition (plant pigments, total carbohydrates, total phenolic, tannin, total flavonoids, oil constituents, macro and micro-elements) with indigenous hormones (gibberellic acid GA3 and abscisic acid ABA) and antioxidant enzymes (peroxidase and superoxide dismutase) were also positively affected. The outcomes of current study emphasis global warning about chemical fertilisers pollution, particularly in new reclaimed areas and safety production of medicinal and aromatic plants.

19 citations

Journal ArticleDOI
TL;DR: F foliar spray of nano silicon combined with soil addition of gypsum was the best effective and economic treatment recommended for mitigating the harmful effect of salinity stress on Jatropha plants irrigated with saline water at concentration up to 4000 ppm.
Abstract: An open field experiment was carried out during 2015 and 2016 seasons at the experimental nursery of the Ornamental Horticulture Department, Faculty of Agriculture, Cairo University, Egypt. The purpose of present research was to investigate the effect of foliar application of nano silicon with different concentrations and gypsum soil application on growth, flowering and chemical constituents of Jatropha integerrima plants irrigated with different levels of saline water. The concentrations of saline water were (1000, 2000 and 4000 ppm), in addition to tap water (270 ppm) as a control, simultaneously plants were received monthly foliar application of nano silicon 1 and 2 mM or soil application of gypsum at 20 g/plant, either applied individually or in combination. The results showed that, elevating salt concentration in irrigation water decreased vegetative growth characteristics, flowering traits, leaves anatomy and chemical constituents. In contrast, increasing salinity of irrigation water boosted contents of proline, Ca%, Na%, Cl%, total phenolic and flavonoids. On the other hand, foliar application of nano silicon and soil addition of gypsum treatments either individually or in combination had favorable effects on enhancing vegetative parameters and chemical constitutes, meanwhile decreasing accumulation of Na%, Cl%, total phenolic and flavonoids in leaves. It can be concluded that, foliar spray of nano silicon combined with soil addition of gypsum was the best effective and economic treatment recommended for mitigating the harmful effect of salinity stress on Jatropha plants irrigated with saline water at concentration up to 4000 ppm.

18 citations


Cited by
More filters
Journal ArticleDOI

7,335 citations

01 Jan 2014
TL;DR: In this paper, a review on modern strategies used for the management of water, pesticides, limitations in the use of chemical pesticides and potential of nano-materials in sustainable agriculture management as modern approaches of nanotechnology is presented.
Abstract: Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like medicine, pharmaceuticals, electronics and agriculture. The potential uses and benefits of nanotechnology are enormous. The current global population is nearly 7 */billion with 50% living in Asia. A large proportion of those living in developing countries face daily food shortages as a result of environmental impacts or political instability, while in the developed world there is surplus of food. For developing countries, the drive is to develop drought and pest resistant crops, which also maximize yield. The potential of nanotechnology to revolutionise the health care, textile, materials, information and communication technology, and energy sectors has been well publicized. The application of nanotechnology to agriculture and food industries is also getting attention nowadays. Investments in agriculture and food nanotechnologies carry increasing weight because their potential benefits range from improved food quality and safety to reduced agricultural inputs and improved processing and nutrition. While most investment is made primarily in developed countries, research advancements provide glimpses of potential applications in agricultural, food, and water safety that could have significant impacts on rural populations in developing countries. This review is concentrated on modern strategies used for the management of water, pesticides, limitations in the use of chemical pesticides and potential of nano-materials in sustainable agriculture management as modern approaches of nanotechnology. Key words: Agriculture, nanotechnology, nanofertilizer, nanoencapsulation, nanoherbicides.

389 citations

Journal ArticleDOI
TL;DR: The importance of NF bacteria and P solubilizing/mobilizing microbes as well as their interactions with mineral P fertilization in improving crop productivity and fertilizers efficiency and positive consequences on plant mineral uptake, crop productivity, and resiliency to environmental constraints are reported.
Abstract: Tomorrow’s agriculture, challenged by increasing global demand for food, scarcity of arable lands, and resources alongside multiple environment pressures, needs to be managed smartly through sustainable and eco-efficient approaches. Modern agriculture has to be more productive, sustainable and environmentally friendly. While macronutrients such as nitrogen (N), phosphorus (P), potassium (K) and sulfur (S) supplied by mineral fertilizers are vital to crop production, agriculturally beneficial microorganisms may also contribute directly (i.e. biological N2 fixation, P solubilization, phytohormone production, etc.) or indirectly (i.e. antimicrobial compounds biosynthesis, elicitation of induced systemic resistance, etc.) to crop improvement and fertilizers efficiency. Microbial-based bioformulations that increase plant performance are greatly needed, and in particular bioformulations that exhibit complementary and synergistic effects with mineral fertilization. Such an integrated soil fertility management strategy has been demonstrated through several controlled and non-controlled experiments, but more efforts have to be made in order to thoroughly understand the multiple functions of beneficial microbes’ functions within the soil microbial community itself and in interaction with plants and mineral resources. In fact, the combined usage of microbial (i.e. beneficial microorganisms: N2-fixing (NF), P-solubilizing and P mobilizing, etc.) and mineral resources is an emerging research area that aims to design and develop efficient microbial formulations which are highly compatible with mineral inputs, with positive impacts on both crops and environment. This novel approach is likely to be of a global interest, especially in most N- and P-deficient agro-ecosystems. In this review, we report on the importance of NF bacteria and P solubilizing/mobilizing microbes as well as their interactions with mineral P fertilization in improving crop productivity and fertilizers efficiency. In addition, we shed light on the interactive and synergistic effects that may occur within multi-trophic interactions involving those two microbial groups and positive consequences on plant mineral uptake, crop productivity and resiliency to environmental constraints. Improving use of mineral nutrients is a must to securing higher yield and productivity in a sustainable manner, therefore continuously designing, developing and testing innovative integrated plant nutrient management systems based on relevant biological resources (crops and microorganisms) is highly required.

315 citations

Journal ArticleDOI
TL;DR: Although nanofertilizers use in agriculture is offering great opportunities to improve plant nutrition and stress tolerance to achieve higher yields in a frame of climate change, not all nanomaterials will be equally safe for all applications.

301 citations

Journal ArticleDOI
07 Jun 2018
TL;DR: Foliar sprays with silicates are effective as pesticides, while (stabilized) silicic acid sprays increase growth and yield and decrease biotic and abiotic stresses.
Abstract: The use of foliar sprays with silicon compounds is relatively new. Initially (in 1990) foliar sprays with silicates were used. In 2003, foliar sprays with (stabilized) silicic acid were introduced, and more recently foliar sprays with silica nanoparticles have also been applied. Foliar sprays with silicates are effective as pesticides, while (stabilized) silicic acid sprays increase growth and yield and decrease biotic and abiotic stresses. The limited data on foliar silica-nano sprays show a tendency to decrease biotic stress and to stimulate a limited increase in growth and yield.

114 citations