scispace - formally typeset
Search or ask a question
Author

Abdellah Barakate

Bio: Abdellah Barakate is an academic researcher from James Hutton Institute. The author has contributed to research in topics: Hordeum vulgare & Meiosis. The author has an hindex of 17, co-authored 29 publications receiving 1330 citations. Previous affiliations of Abdellah Barakate include University of Dundee & University of St Andrews.

Papers
More filters
Journal ArticleDOI
TL;DR: It is reported here that maize bm1, one of the less characterised mutants, shows severely reduced CAD activity in lignified tissues, resulting in the production of a modified lignin.
Abstract: Brown-midrib (bm) mutants of maize have modified lignin of reddish-brown colour. Although four independent bm loci are known, only one of the mutant genes has been previously identified. We report here that maize bm1, one of the less characterised mutants, shows severely reduced CAD activity in lignified tissues, resulting in the production of a modified lignin. Both the total lignin content and the structure of the polymer are altered by the mutation. We further describe the isolation and characterisation of the maize CAD cDNA and mapping of the CAD gene. CAD maps very closely to the known location of bm1 and co-segregates with the bm1 locus in two independent recombinant inbred populations. These data strongly support the premise that maize bm1 directly affects expression of the CAD gene.

279 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a modest temperature shift is sufficient to alter meiotic progression in relation to the chromosome cycles and is accompanied by a shift in chiasma distribution with an increase in interstitial and proximal chiasmata, suggesting a potential route to modify recombination in cereals.
Abstract: Meiosis involves reciprocal exchange of genetic information between homologous chromosomes to generate new allelic combinations. In cereals, the distribution of genetic crossovers, cytologically visible as chiasmata, is skewed toward the distal regions of the chromosomes. However, many genes are known to lie within interstitial/proximal regions of low recombination, creating a limitation for breeders. We investigated the factors underlying the pattern of chiasma formation in barley (Hordeum vulgare) and show that chiasma distribution reflects polarization in the spatiotemporal initiation of recombination, chromosome pairing, and synapsis. Consequently, meiotic progression in distal chromosomal regions occurs in coordination with the chromatin cycles that are a conserved feature of the meiotic program. Recombination initiation in interstitial and proximal regions occurs later than distal events, is not coordinated with the cycles, and rarely progresses to form chiasmata. Early recombination initiation is spatially associated with early replicating, euchromatic DNA, which is predominately found in distal regions. We demonstrate that a modest temperature shift is sufficient to alter meiotic progression in relation to the chromosome cycles. The polarization of the meiotic processes is reduced and is accompanied by a shift in chiasma distribution with an increase in interstitial and proximal chiasmata, suggesting a potential route to modify recombination in cereals.

171 citations

Journal ArticleDOI
TL;DR: Self-processing polyproteins using the FMDV 2A sequence could provide a system for ensuring co-ordinated, stable expression of multiple introduced proteins in plant cells.
Abstract: Summary Achieving co-ordinate, high-level and stable expression of multiple transgenes in plants is currently difficult. Expression levels are notoriously variable and influenced by factors that act independently on transgenes at different genetic loci. Instability of expression due to loss, re-arrangement or silencing of transgenes may occur, and is exacerbated by increasing numbers of transgenic loci and repeated use of homologous sequences. Even linking two or more genes within a T-DNA does not necessarily result in co-ordinate expression. Linking proteins in a single open reading frame – a polyprotein – is a strategy for co-ordinate expression used by many viruses. After translation, polyproteins are processed into constituent polypeptides, usually by proteinases encoded within the polyprotein itself. However, in foot-and-mouth disease virus (FMDV), a sequence (2A) of just 16–20 amino acids appears to have the unique capability to mediate cleavage at its own C-terminus by an apparently enzyme-independent, novel type of reaction. This sequence can also mediate cleavage in a heterologous protein context in a range of eukaryotic expression systems. We have constructed a plasmid in which the 2A sequence is inserted between the reporter genes chloramphenicol acetyltransferase (CAT) and β-glucuronidase (GUS), maintaining a single open reading frame. Here we report that expression of this construct in wheatgerm lysate and transgenic plants results in efficient cleavage of the polyprotein and co-ordinate expression of active CAT and GUS. Self-processing polyproteins using the FMDV 2A sequence could therefore provide a system for ensuring coordinated, stable expression of multiple introduced proteins in plant cells.

144 citations

Book ChapterDOI
TL;DR: This article reviews the literature concerning the manipulation of multiple genes in plants and tests both conventional and novel methods for achieving co-ordinate suppression or over-expression of up to three plant lignin genes.
Abstract: Many complex biochemical pathways in plants have now been manipulated genetically, usually by suppression or over-expression of single genes. Further exploitation of the potential for plant genetic manipulation, both as a research tool and as a vehicle for plant biotechnology, will require the co-ordinate manipulation of multiple genes on a pathway. This goal is currently very difficult to achieve. A number of approaches have been taken to combine or ‘pyramid’ transgenes in one plant and have met with varying degrees of success. These approaches include sexual crossing, re-transformation, co-transformation and the use of linked transgenes. Novel, alternative ‘enabling’ technologies are also being developed that aim to use single transgenes to manipulate the expression of multiple genes. A chimeric transgene with linked partial gene sequences placed under the control of a single promoter can be used to co-ordinately suppress numerous plant endogenous genes. Constructs modelled on viral polyproteins can be used to simultaneously introduce multiple protein-coding genes into plant cells. In the course of our work on the lignin biosynthetic pathway, we have tested both conventional and novel methods for achieving co-ordinate suppression or over-expression of up to three plant lignin genes. In this article we review the literature concerning the manipulation of multiple genes in plants. We also report on our own experiences and results using different methods to perform directed manipulation of lignin biosynthesis in tobacco.

96 citations

Journal ArticleDOI
TL;DR: A novel method is tested by using single chimeric constructs incorporating partial sense sequences for multiple genes to target suppression of two or three lignin biosynthetic enzymes, indicating that chimeric silencing constructs offer great potential for the rapid and coordinate suppression of multiple genes on diverse biochemical pathways.
Abstract: Many reports now describe the manipulation of plant metabolism by suppressing the expression of single genes. The potential of such work could be greatly expanded if multiple genes could be coordinately suppressed. In the work presented here, we test a novel method for achieving this by using single chimeric constructs incorporating partial sense sequences for multiple genes to target suppression of two or three lignin biosynthetic enzymes. We compare this method with a more conventional approach to achieving the same end by crossing plants harboring different antisense transgenes. Our results indicate that crossing antisense plants is less straightforward and predictable in outcome than anticipated. Most progeny had higher levels of target enzyme activity than predicted and had lost the expected modifications to lignin structure. In comparison, plants transformed with the chimeric partial sense constructs had more consistent high level suppression of target enzymes and had significant changes to lignin content, structure, and composition. It was possible to suppress three target genes coordinately using a single chimeric construct. Our results indicate that chimeric silencing constructs offer great potential for the rapid and coordinate suppression of multiple genes on diverse biochemical pathways and that the technique therefore deserves to be adopted by other researchers.

95 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 Jun 1997
TL;DR: This work focuses on the recent developments in pollen biology that help to understand how the male gamete survives and accomplishes its successful delivery to the ovule of the sperm to effect sexual reproduction.
Abstract: Many aspects of Angiosperm pollen germination and tube growth are discussed including mechanisms of dehydration and rehydration, in vitro germination, pollen coat compounds, the dynamic involvement of cytoskeletal elements (actin, microtubules), calcium ion fluxes, extracellular matrix elements (stylar arabinogalactan proteins), and control mechanisms of gene expression in dehydrating and germinating pollen. We focus on the recent developments in pollen biology that help us understand how the male gamete survives and accomplishes its successful delivery to the ovule of the sperm to effect sexual reproduction.

778 citations

05 Mar 2001
TL;DR: It is indicated that lignin and cellulose deposition could be regulated in a compensatory fashion, which may contribute to metabolic flexibility and a growth advantage to sustain the long-term structural integrity of woody perennials.
Abstract: Because lignin limits the use of wood for fiber, chemical, and energy production, strategies for its downregulation are of considerable interest. We have produced transgenic aspen (Populus tremuloides Michx.) trees in which expression of a lignin biosynthetic pathway gene Pt4CL1 encoding 4-coumarate:coenzyme A ligase (4CL) has been downregulated by antisense inhibition. Trees with suppressed Pt4CL1 expression exhibited up to a 45% reduction of lignin, but this was compensated for by a 15% increase in cellulose. As a result, the total lignin–cellulose mass remained essentially unchanged. Leaf, root, and stem growth were substantially enhanced, and structural integrity was maintained both at the cellular and whole-plant levels in the transgenic lines. Our results indicate that lignin and cellulose deposition could be regulated in a compensatory fashion, which may contribute to metabolic flexibility and a growth advantage to sustain the long-term structural integrity of woody perennials.

717 citations

Journal ArticleDOI
TL;DR: This paper provides a state of the art on the occurrence and management of harmful cyanobacterial blooms in surface and drinking water, including economic impacts and research needs.

684 citations

Journal ArticleDOI
TL;DR: Virus-induced gene silencing is a recently developed gene transcript suppression technique for characterizing the function of plant genes that is rapid, does not require development of stable transformants, allows characterization of phenotypes that might be lethal in stable lines, and offers the potential to silence either individual or multiple members of a gene family.
Abstract: Virus-induced gene silencing (VIGS) is a recently developed gene transcript suppression technique for characterizing the function of plant genes. The approach involves cloning a short sequence of a targeted plant gene into a viral delivery vector. The vector is used to infect a young plant, and in a few weeks natural defense mechanisms of the plant directed at suppressing virus replication also result in specific degradation of mRNAs from the endogenous plant gene that is targeted for silencing. VIGS is rapid (3-4 weeks from infection to silencing), does not require development of stable transformants, allows characterization of phenotypes that might be lethal in stable lines, and offers the potential to silence either individual or multiple members of a gene family. Here we briefly review the discoveries that led to the development of VIGS and what is known about the experimental requirements for effective silencing. We describe the methodology of VIGS and how it can be optimized and used for both forward and reverse genetics studies. Advantages and disadvantages of VIGS compared with other loss-of-function approaches available for plants are discussed, along with how the limitations of VIGS might be overcome. Examples are reviewed where VIGS has been used to provide important new insights into the roles of specific genes in plant development and plant defense responses. Finally, we examine the future prospects for VIGS as a powerful tool for assessing and characterizing the function of plant genes.

659 citations