scispace - formally typeset
Search or ask a question
Author

Abdoulaye Djimde

Bio: Abdoulaye Djimde is an academic researcher from University of the Sciences. The author has contributed to research in topics: Malaria & Plasmodium falciparum. The author has an hindex of 38, co-authored 149 publications receiving 4423 citations. Previous affiliations of Abdoulaye Djimde include Wellcome Trust Sanger Institute & University of Bamako.


Papers
More filters
Journal ArticleDOI
TL;DR: Higher, more frequent, or prolonged dosage regimens should now be evaluated in very young children, particularly if malnourished, and in patients with hyperparasitemia, as well as patients in very low transmission intensity areas with emerging parasite resistance.
Abstract: Background: Achieving adequate antimalarial drug exposure is essential for curing malaria. Day 7 blood or plasma lumefantrine concentrations provide a simple measure of drug exposure that correlates well with artemether-lumefantrine efficacy. However, the 'therapeutic' day 7 lumefantrine concentration threshold needs to be defined better, particularly for important patient and parasite sub-populations. Methods: The WorldWide Antimalarial Resistance Network (WWARN) conducted a large pooled analysis of individual pharmacokinetic-pharmacodynamic data from patients treated with artemether-lumefantrine for uncomplicated Plasmodium falciparum malaria, to define therapeutic day 7 lumefantrine concentrations and identify patient factors that substantially alter these concentrations. A systematic review of PubMed, Embase, Google Scholar, ClinicalTrials.gov and conference proceedings identified all relevant studies. Risk of bias in individual studies was evaluated based on study design, methodology and missing data. Results: Of 31 studies identified through a systematic review, 26 studies were shared with WWARN and 21 studies with 2,787 patients were included. Recrudescence was associated with low day 7 lumefantrine concentrations (HR 1.59 (95 % CI 1.36 to 1.85) per halving of day 7 concentrations) and high baseline parasitemia (HR 1.87 (95 % CI 1.22 to 2.87) per 10-fold increase). Adjusted for mg/kg dose, day 7 concentrations were lowest in very young children (98 % cure rates (if parasitemia <135,000/μL). Conclusions: Current artemether-lumefantrine dosing recommendations achieve day 7 lumefantrine concentrations ≥200 ng/ml and high cure rates in most uncomplicated malaria patients. Three groups are at increased risk of treatment failure: very young children (particularly those underweight-for-age); patients with high parasitemias; and patients in very low transmission intensity areas with emerging parasite resistance. In these groups, adherence and treatment response should be monitored closely. Higher, more frequent, or prolonged dosage regimens should now be evaluated in very young children, particularly if malnourished, and in patients with hyperparasitemia.

445 citations

Journal ArticleDOI
TL;DR: The Malaria Eradication Research Agenda (malERA) Consultative Group on Drugs present a research and development agenda to ensure that appropriate drugs are available for use in malaria eradication.
Abstract: Antimalarial drugs will be essential tools at all stages of malaria elimination along the path towards eradication, including the early control or "attack" phase to drive down transmission and the later stages of maintaining interruption of transmission, preventing reintroduction of malaria, and eliminating the last residual foci of infection. Drugs will continue to be used to treat acute malaria illness and prevent complications in vulnerable groups, but better drugs are needed for elimination-specific indications such as mass treatment, curing asymptomatic infections, curing relapsing liver stages, and preventing transmission. The ideal malaria eradication drug is a coformulated drug combination suitable for mass administration that can be administered in a single encounter at infrequent intervals and that results in radical cure of all life cycle stages of all five malaria species infecting humans. Short of this optimal goal, highly desirable drugs might have limitations such as targeting only one or two parasite species, the priorities being Plasmodium falciparum and Plasmodium vivax. The malaria research agenda for eradication should include research aimed at developing such drugs and research to develop situation-specific strategies for using both current and future drugs to interrupt malaria transmission.

273 citations

Journal ArticleDOI
TL;DR: In samples taken from individual patients before and after drug treatment, an association between the more highly mutated forms of dhps and/or dhfr and parasites that were not cleared by antifolate therapy is found.

257 citations

Journal ArticleDOI
TL;DR: Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine.
Abstract: Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 - 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36-17.97, P < 0.001 : were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine.

211 citations

Journal ArticleDOI
Eric A. Achidi1, Tsiri Agbenyega2, Stephen Allen3, Olukemi K. Amodu4, Kalifa Bojang5, David J. Conway5, Patrick H. Corran6, Panos Deloukas, Abdoulaye Djimde7, Amagana Dolo7, Ogobara K. Doumbo7, Chris Drakeley, Patrick E. Duffy8, Sarah J. Dunstan9, Jennifer Evans10, Jeremy Farrar9, Deepika Fernando11, Tran Tinh Hien9, Rolf D. Horstmann10, Muntaser E. Ibrahim12, Nadira D. Karunaweera11, Gilbert Kokwaro13, Kojo Koram14, Dominic P. Kwiatkowski9, Martha M. Lemnge15, Julie Makani16, Kevin Marsh13, Pascal Michon17, David Modiano18, Malcolm E. Molyneux19, Ivo Mueller17, Theonest K. Mutabingwa20, Michael W. Parker9, Norbert Peshu13, Christopher V. Plowe21, Odile Puijalon22, Jiannis Ragoussis9, John C. Reeder17, Hugh Reyburn, Eleanor M. Riley23, Jane Rogers, Anavaj Sakuntabhai22, Pratap Singhasivanon24, Sodiomon B. Sirima, Giorgio Sirugo5, Adama Tall, Terrie Taylor25, Mahamadou A. Thera7, Marita Troye-Blomberg26, Thomas N. Williams13, Michael T. Wilson14, L. Amenga-Etego27, Tobias O. Apinjoh1, Edith C. Bougouma, Rajika L. Dewasurendra11, Mahamadou Diakite7, Anthony Enimil2, Ayman S. Hussein12, Deus S. Ishengoma15, Muminatou Jallow5, Enmoore Lin17, Alioune Ly, Valentina D. Mangano, Alphaxard Manjurano, Laurens Manning17, Carolyne M. Ndila13, Vysaul Nyirongo19, Tom Oluoch13, Nguyen Ngoc Quyen9, Prapat Suriyaphol24, Ousman Toure7, Kirk A. Rockett9, Aaron Vanderwal9, Taane G. Clark9, Rebecca Wrigley9, Daniel Alcock, Sarah Auburn, David Barnwell9, Susan Bull9, Susana Campino, Jantina DeVries9, Abier Elzein9, Julie Evans9, Kathryn Fitzpatrick9, Anita Ghansah9, Angie Green9, Lee Hart9, Eliza Hilton9, Christina Hubbart9, Catherine Hughes9, Anna E. Jeffreys9, Katja Kivinen, Bronwyn MacInnis, Magnus Manske, Gareth Maslen, Marilyn McCreight9, Alieu Mendy9, Catherine L. Moyes9, Aceme Nyika, Claire Potter9, Paul Risley6, Kate Rowlands9, Miguel A. Sanjoaquin19, Kerrin S. Small9, Elilan Somaskantharajah, Marryat Stevens9, Yik Ying Teo9, Renee Watson9, Dan Carucci28, Katharine Cook, Alan Doyle, Ogobara K. Duombo7, Michael Gottlieb28 
11 Dec 2008-Nature
TL;DR: The Malaria Genomic Epidemiology Network (MalariaGEN) as discussed by the authors is a consortial approach that brings together researchers from 21 countries to conduct large-scale studies of genomic variation.
Abstract: Large-scale studies of genomic variation could assist efforts to eliminate malaria. But there are scientific, ethical and practical challenges to carrying out such studies in developing countries, where the burden of disease is greatest. The Malaria Genomic Epidemiology Network (MalariaGEN) is now working to overcome these obstacles, using a consortial approach that brings together researchers from 21 countries. © 2008 Macmillan Publishers Limited. All rights reserved.

140 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: All three fast turnaround sequencers evaluated here were able to generate usable sequence, however there are key differences between the quality of that data and the applications it will support.
Abstract: Next generation sequencing (NGS) technology has revolutionized genomic and genetic research. The pace of change in this area is rapid with three major new sequencing platforms having been released in 2011: Ion Torrent’s PGM, Pacific Biosciences’ RS and the Illumina MiSeq. Here we compare the results obtained with those platforms to the performance of the Illumina HiSeq, the current market leader. In order to compare these platforms, and get sufficient coverage depth to allow meaningful analysis, we have sequenced a set of 4 microbial genomes with mean GC content ranging from 19.3 to 67.7%. Together, these represent a comprehensive range of genome content. Here we report our analysis of that sequence data in terms of coverage distribution, bias, GC distribution, variant detection and accuracy. Sequence generated by Ion Torrent, MiSeq and Pacific Biosciences technologies displays near perfect coverage behaviour on GC-rich, neutral and moderately AT-rich genomes, but a profound bias was observed upon sequencing the extremely AT-rich genome of Plasmodium falciparum on the PGM, resulting in no coverage for approximately 30% of the genome. We analysed the ability to call variants from each platform and found that we could call slightly more variants from Ion Torrent data compared to MiSeq data, but at the expense of a higher false positive rate. Variant calling from Pacific Biosciences data was possible but higher coverage depth was required. Context specific errors were observed in both PGM and MiSeq data, but not in that from the Pacific Biosciences platform. All three fast turnaround sequencers evaluated here were able to generate usable sequence. However there are key differences between the quality of that data and the applications it will support.

1,967 citations

Journal ArticleDOI
TL;DR: The accuracy of the estimation of the burden of serious fungal infections country by country for over 5.7 billion people is questioned in the 43 published papers within the LIFE initiative.
Abstract: Fungal diseases kill more than 1.5 million and affect over a billion people. However, they are still a neglected topic by public health authorities even though most deaths from fungal diseases are avoidable. Serious fungal infections occur as a consequence of other health problems including asthma, AIDS, cancer, organ transplantation and corticosteroid therapies. Early accurate diagnosis allows prompt antifungal therapy; however this is often delayed or unavailable leading to death, serious chronic illness or blindness. Recent global estimates have found 3,000,000 cases of chronic pulmonary aspergillosis, ~223,100 cases of cryptococcal meningitis complicating HIV/AIDS, ~700,000 cases of invasive candidiasis, ~500,000 cases of Pneumocystis jirovecii pneumonia, ~250,000 cases of invasive aspergillosis, ~100,000 cases of disseminated histoplasmosis, over 10,000,000 cases of fungal asthma and ~1,000,000 cases of fungal keratitis occur annually. Since 2013, the Leading International Fungal Education (LIFE) portal has facilitated the estimation of the burden of serious fungal infections country by country for over 5.7 billion people (>80% of the world’s population). These studies have shown differences in the global burden between countries, within regions of the same country and between at risk populations. Here we interrogate the accuracy of these fungal infection burden estimates in the 43 published papers within the LIFE initiative.

1,469 citations

Journal ArticleDOI
TL;DR: The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine.
Abstract: Malaria is a major killer of children worldwide and the strongest known force for evolutionary selection in the recent history of the human genome. The past decade has seen growing evidence of ethnic differences in susceptibility to malaria and of the diverse genetic adaptations to malaria that have arisen in different populations: epidemiological confirmation of the hypotheses that G6PD deficiency, α + thalassemia, and hemoglobin C protect against malaria mortality; the application of novel haplotype-based techniques demonstrating that malaria-protective genes have been subject to recent positive selection; the first genetic linkage maps of resistance to malaria in experimental murine models; and a growing number of reported associations with resistance and susceptibility to human malaria, particularly in genes involved in immunity, inflammation, and cell adhesion. The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine.

1,002 citations

Journal ArticleDOI
TL;DR: An alternative framework for imputation methods for genome-wide association studies is developed, built around a new approximation that makes it computationally efficient to use all available reference haplotypes, and it is demonstrated that the approximation improves efficiency in large, sequence-based reference panels.
Abstract: Genotype imputation is a statistical technique that is often used to increase the power and resolution of genetic association studies. Imputation methods work by using haplotype patterns in a reference panel to predict unobserved genotypes in a study dataset, and a number of approaches have been proposed for choosing subsets of reference haplotypes that will maximize accuracy in a given study population. These panel selection strategies become harder to apply and interpret as sequencing efforts like the 1000 Genomes Project produce larger and more diverse reference sets, which led us to develop an alternative framework. Our approach is built around a new approximation that uses local sequence similarity to choose a custom reference panel for each study haplotype in each region of the genome. This approximation makes it computationally efficient to use all available reference haplotypes, which allows us to bypass the panel selection step and to improve accuracy at low-frequency variants by capturing unexpected allele sharing among populations. Using data from HapMap 3, we show that our framework produces accurate results in a wide range of human populations. We also use data from the Malaria Genetic Epidemiology Network (MalariaGEN) to provide recommendations for imputation-based studies in Africa. We demonstrate that our approximation improves efficiency in large, sequence-based reference panels, and we discuss general computational strategies for modern reference datasets. Genome-wide association studies will soon be able to harness the power of thousands of reference genomes, and our work provides a practical way for investigators to use this rich information. New methodology from this study is implemented in the IMPUTE2 software package.

976 citations