scispace - formally typeset
Search or ask a question
Author

Abdul Soofi

Other affiliations: Wayne State University
Bio: Abdul Soofi is an academic researcher from University of Michigan. The author has contributed to research in topics: Podocyte & Nephrin. The author has an hindex of 16, co-authored 23 publications receiving 1681 citations. Previous affiliations of Abdul Soofi include Wayne State University.

Papers
More filters
Journal ArticleDOI
TL;DR: The data support the model that during podocyte intercellular junction formation, engagement of the nephrin ectodomain induces transient catalytic activity that results in nephrine phosphorylation on specific nephin cytoplasmic domain tyrosine residues, which resulted in recruitment of the SH2-SH3 domain-containing adapter protein Nck and assembly of actin filaments in an Nck-dependent fashion.
Abstract: A properly established and maintained podocyte intercellular junction, or slit diaphragm, is a necessary component of the selective permeability barrier of the kidney glomerulus. The observation that mutation or deletion of the slit diaphragm transmembrane protein nephrin results in failure of podocyte foot process morphogenesis and concomitant proteinuria first suggested the hypothesis that nephrin serves as a component of a signaling complex that directly integrates podocyte junctional integrity with cytoskeletal dynamics. The observations made herein provide the first direct evidence to our knowledge for a phosphorylation-mediated signaling mechanism by which this integrative function is derived. Our data support the model that during podocyte intercellular junction formation, engagement of the nephrin ectodomain induces transient Fyn catalytic activity that results in nephrin phosphorylation on specific nephrin cytoplasmic domain tyrosine residues. We found that this nephrin phosphorylation event resulted in recruitment of the SH2-SH3 domain-containing adapter protein Nck and assembly of actin filaments in an Nck-dependent fashion. Considered in the context of the role of nephrin family proteins in other organisms and the integral relationship of actin dynamics and junction formation, these observations establish a function for nephrin in regulating actin cytoskeletal dynamics.

334 citations

Journal ArticleDOI
01 Jan 2003-Genesis
TL;DR: A transgenic mouse line that expresses Cre recombinase exclusively in podocytes is reported, and Histological analysis of the kidneys showed that β‐gal expression was confined to podocytes.
Abstract: We report a transgenic mouse line that expresses Cre recombinase exclusively in podocytes. Twenty- four transgenic founders were generated in which Cre recombinase was placed under the regulation of a 2.5-kb fragment of the human NPHS2 promoter. Previously, this fragment was shown to drive beta-galactosidase (beta-gal) expression exclusively in podocytes of transgenic mice. For analysis, founder mice were bred with ROSA26 mice, a reporter line that expresses beta-gal in cells that undergo Cre recombination. Eight of 24 founder lines were found to express beta-gal exclusively in the kidney. Histological analysis of the kidneys showed that beta-gal expression was confined to podocytes. Cre recombination occurred during the capillary loop stage in glomerular development. No evidence for Cre recombination was detected in any of 14 other tissues examined.

296 citations

Journal ArticleDOI
TL;DR: Mammalian FAT1 is identified as a proximal element of a signaling pathway that determines both cellular polarity in the plane of the monolayer and directed actin‐dependent cell motility.
Abstract: Cell migration requires integration of cellular processes resulting in cell polarization and actin dynamics. Previous work using tools of Drosophila genetics suggested that protocadherin fat serves in a pathway necessary for determining cell polarity in the plane of a tissue. Here we identify mammalian FAT1 as a proximal element of a signaling pathway that determines both cellular polarity in the plane of the monolayer and directed actin-dependent cell motility. FAT1 is localized to the leading edge of lamellipodia, filopodia, and microspike tips where FAT1 directly interacts with Ena/VASP proteins that regulate the actin polymerization complex. When targeted to mitochondrial outer leaflets, FAT1 cytoplasmic domain recruits components of the actin polymerization machinery sufficient to induce ectopic actin polymerization. In an epithelial cell wound model, FAT1 knockdown decreased recruitment of endogenous VASP to the leading edge and resulted in impairment of lamellipodial dynamics, failure of polarization, and an attenuation of cell migration. FAT1 may play an integrative role regulating cell migration by participating in Ena/VASP-dependent regulation of cytoskeletal dynamics at the leading edge and by transducing an Ena/VASP-independent polarity cue.

197 citations

Journal Article
TL;DR: The majority of studies performed indicate that the age-related increase in oxidative damage to DNA is significantly reduced by CR, and early studies suggest that CR reduces DNA damage by enhancing DNA repair.
Abstract: Caloric restriction (CR) without malnutrition is the only experimental manipulation that has consistently been shown to increase the mean and maximum lifespan of laboratory rodents. It has been suggested that CR extends the longevity of rodents and reduces the incidence of age-related pathological lesions by reducing the levels of DNA damage and mutations that accumulate with age within a cells genome. This hypothesis is attractive because the integrity of the genome is essential to a cell/organism and because it is supported by the observations that both cancer and immunological defects, which increase significantly with age and are delayed by CR, are associated with changes in DNA damage. However, all the evidence supporting the premise that the accumulation of DNA damage/mutations plays a role in aging and CR is correlative, i.e., the anti-aging action of CR-fed rodents is correlated with decreased DNA damage and mutation and increased DNA repair capacity. Therefore, additional experiments are required which employ more accurate assays of the DNA repair pathways as well as genetically engineered animal models to establish the role of specific DNA repair pathways and/or enzymes in the anti-aging action of CR. In this paper, we review the proposed mechanisms of DNA damage/repair while providing insight into current research that may assist in "unlocking" the mechanisms behind the life-prolonging effect of CR.

123 citations

Journal ArticleDOI
TL;DR: Evidence that CR promotes genomic stability by increasing DNA repair capacity by increasing base excision repair (BER) is provided, and support for the hormesis theory of caloric restriction is provided.

119 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: How different members of the cadherin family act in different developmental contexts is examined, and the mechanisms involved are discussed.
Abstract: Tissue morphogenesis during development is dependent on activities of the cadherin family of cell-cell adhesion proteins that includes classical cadherins, protocadherins, and atypical cadherins (Fat, Dachsous, and Flamingo). The extracellular domain of cadherins contains characteristic repeats that regulate homophilic and heterophilic interactions during adhesion and cell sorting. Although cadherins may have originated to facilitate mechanical cell-cell adhesion, they have evolved to function in many other aspects of morphogenesis. These additional roles rely on cadherin interactions with a wide range of binding partners that modify their expression and adhesion activity by local regulation of the actin cytoskeleton and diverse signaling pathways. Here we examine how different members of the cadherin family act in different developmental contexts, and discuss the mechanisms involved.

1,006 citations

Journal ArticleDOI
TL;DR: Recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development are reviewed and exciting new insights are provided into the elusive mechanisms that regulate organ growth and regeneration.
Abstract: The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration.

953 citations

Journal ArticleDOI
TL;DR: The ability of the mouse kidney to be protected by prior exposure to ischemia or urinary tract obstruction is discussed as a potential model to emulate as the search for pharmacologic agents that will serve to protect the kidney against injury continues.

741 citations

Journal ArticleDOI
TL;DR: All glomerular diseases are placed within this spectrum of podocytopathies with predictable outcomes based on podocyte biology impacted by temporal, genetic, and environmental cues to rationalize clinical effort toward podocyte preservation and prevention of progression.

658 citations