scispace - formally typeset
Search or ask a question
Author

Abdullah-Al Nahid

Other affiliations: Macquarie University
Bio: Abdullah-Al Nahid is an academic researcher from Khulna University. The author has contributed to research in topics: Convolutional neural network & Computer science. The author has an hindex of 12, co-authored 59 publications receiving 598 citations. Previous affiliations of Abdullah-Al Nahid include Macquarie University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
28 Aug 2019-Energies
TL;DR: An electricity theft detection system is proposed based on a combination of a convolutional neural network (CNN) and a long short-term memory (LSTM) architecture that can classify both the majority class and the minority class with good accuracy.
Abstract: Among an electricity provider’s non-technical losses, electricity theft has the most severe and dangerous effects. Fraudulent electricity consumption decreases the supply quality, increases generation load, causes legitimate consumers to pay excessive electricity bills, and affects the overall economy. The adaptation of smart grids can significantly reduce this loss through data analysis techniques. The smart grid infrastructure generates a massive amount of data, including the power consumption of individual users. Utilizing this data, machine learning and deep learning techniques can accurately identify electricity theft users. In this paper, an electricity theft detection system is proposed based on a combination of a convolutional neural network (CNN) and a long short-term memory (LSTM) architecture. CNN is a widely used technique that automates feature extraction and the classification process. Since the power consumption signature is time-series data, we were led to build a CNN-based LSTM (CNN-LSTM) model for smart grid data classification. In this work, a novel data pre-processing algorithm was also implemented to compute the missing instances in the dataset, based on the local values relative to the missing data point. Furthermore, in this dataset, the count of electricity theft users was relatively low, which could have made the model inefficient at identifying theft users. This class imbalance scenario was addressed through synthetic data generation. Finally, the results obtained indicate the proposed scheme can classify both the majority class (normal users) and the minority class (electricity theft users) with good accuracy.

201 citations

Journal ArticleDOI
TL;DR: This paper reflects a model designed to measure the various parameters of data in a network such as accuracy, precision, confusion matrix, and others, and XGBoost is employed on the NSL-KDD (network socket layer-knowledge discovery in databases) dataset to get the desired results.
Abstract: As the world is on the verge of venturing into fifth-generation communication technology and embracing concepts such as virtualization and cloudification, the most crucial aspect remains “security”, as more and more data get attached to the internet. This paper reflects a model designed to measure the various parameters of data in a network such as accuracy, precision, confusion matrix, and others. XGBoost is employed on the NSL-KDD (network socket layer-knowledge discovery in databases) dataset to get the desired results. The whole motive is to learn about the integrity of data and have a higher accuracy in the prediction of data. By doing so, the amount of mischievous data floating in a network can be minimized, making the network a secure place to share information. The more secure a network is, the fewer situations where data is hacked or modified. By changing various parameters of the model, future research can be done to get the most out of the data entering and leaving a network. The most important player in the network is data, and getting to know it more closely and precisely is half the work done. Studying data in a network and analyzing the pattern and volume of data leads to the emergence of a solid Intrusion Detection System (IDS), that keeps the network healthy and a safe place to share confidential information.

176 citations

Journal ArticleDOI
TL;DR: A Convolutional Neural Network, a Long-Short-Term-Memory (LSTM), and a combination of CNN and LSTM are proposed for breast cancer image classification using novel DNN techniques guided by structural and statistical information derived from the images.
Abstract: Breast Cancer is a serious threat and one of the largest causes of death of women throughout the world. The identification of cancer largely depends on digital biomedical photography analysis such as histopathological images by doctors and physicians. Analyzing histopathological images is a nontrivial task, and decisions from investigation of these kinds of images always require specialised knowledge. However, Computer Aided Diagnosis (CAD) techniques can help the doctor make more reliable decisions. The state-of-the-art Deep Neural Network (DNN) has been recently introduced for biomedical image analysis. Normally each image contains structural and statistical information. This paper classifies a set of biomedical breast cancer images (BreakHis dataset) using novel DNN techniques guided by structural and statistical information derived from the images. Specifically a Convolutional Neural Network (CNN), a Long-Short-Term-Memory (LSTM), and a combination of CNN and LSTM are proposed for breast cancer image classification. Softmax and Support Vector Machine (SVM) layers have been used for the decision-making stage after extracting features utilising the proposed novel DNN models. In this experiment the best Accuracy value of 91.00% is achieved on the 200x dataset, the best Precision value 96.00% is achieved on the 40x dataset, and the best F-Measure value is achieved on both the 40x and 100x datasets.

143 citations

Journal ArticleDOI
TL;DR: This work has put a special emphasis on the Convolutional Neural Network (CNN) method for breast image classification, and described the involvement of the conventional Neural Network, Logic Based classifiers such as the Random Forest algorithm, Support Vector Machines (SVM), Bayesian methods, and a few of the semisupervised and unsupervised methods.
Abstract: Breast cancer is one of the largest causes of women's death in the world today. Advance engineering of natural image classification techniques and Artificial Intelligence methods has largely been used for the breast-image classification task. The involvement of digital image classification allows the doctor and the physicians a second opinion, and it saves the doctors' and physicians' time. Despite the various publications on breast image classification, very few review papers are available which provide a detailed description of breast cancer image classification techniques, feature extraction and selection procedures, classification measuring parameterizations, and image classification findings. We have put a special emphasis on the Convolutional Neural Network (CNN) method for breast image classification. Along with the CNN method we have also described the involvement of the conventional Neural Network (NN), Logic Based classifiers such as the Random Forest (RF) algorithm, Support Vector Machines (SVM), Bayesian methods, and a few of the semisupervised and unsupervised methods which have been used for breast image classification.

94 citations

Journal ArticleDOI
TL;DR: This paper has classified a set of Histopathological Breast-Cancer images utilizing a state-of-the-art CNN model containing a residual block and examined the performance of the novel CNN model as Histopathology image classifier.
Abstract: Identification of the malignancy of tissues from Histopathological images has always been an issue of concern to doctors and radiologists. This task is time-consuming, tedious and moreover very challenging. Success in finding malignancy from Histopathological images primarily depends on long-term experience, though sometimes experts disagree on their decisions. However, Computer Aided Diagnosis (CAD) techniques help the radiologist to give a second opinion that can increase the reliability of the radiologist’s decision. Among the different image analysis techniques, classification of the images has always been a challenging task. Due to the intense complexity of biomedical images, it is always very challenging to provide a reliable decision about an image. The state-of-the-art Convolutional Neural Network (CNN) technique has had great success in natural image classification. Utilizing advanced engineering techniques along with the CNN, in this paper, we have classified a set of Histopathological Breast-Cancer (BC) images utilizing a state-of-the-art CNN model containing a residual block. Conventional CNN operation takes raw images as input and extracts the global features; however, the object oriented local features also contain significant information—for example, the Local Binary Pattern (LBP) represents the effective textural information, Histogram represent the pixel strength distribution, Contourlet Transform (CT) gives much detailed information about the smoothness about the edges, and Discrete Fourier Transform (DFT) derives frequency-domain information from the image. Utilizing these advantages, along with our proposed novel CNN model, we have examined the performance of the novel CNN model as Histopathological image classifier. To do so, we have introduced five cases: (a) Convolutional Neural Network Raw Image (CNN-I); (b) Convolutional Neural Network CT Histogram (CNN-CH); (c) Convolutional Neural Network CT LBP (CNN-CL); (d) Convolutional Neural Network Discrete Fourier Transform (CNN-DF); (e) Convolutional Neural Network Discrete Cosine Transform (CNN-DC). We have performed our experiments on the BreakHis image dataset. The best performance is achieved when we utilize the CNN-CH model on a 200× dataset that provides Accuracy, Sensitivity, False Positive Rate, False Negative Rate, Recall Value, Precision and F-measure of 92.19%, 94.94%, 5.07%, 1.70%, 98.20%, 98.00% and 98.00%, respectively.

91 citations


Cited by
More filters
01 Jan 1990
TL;DR: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article, where the authors present an overview of their work.
Abstract: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article.

2,933 citations

Journal ArticleDOI
01 Jan 2021
TL;DR: The concept of IDS is clarified and the taxonomy based on the notable ML and DL techniques adopted in designing network‐based IDS (NIDS) systems is provided, which highlights various research challenges and provided the future scope for the research in improving ML andDL‐based NIDS.
Abstract: The rapid advances in the internet and communication fields have resulted in a huge increase in the network size and the corresponding data. As a result, many novel attacks are being gener...

346 citations

Journal ArticleDOI
TL;DR: Two machine learning approaches for the automatic classification of breast cancer histology images into benign and malignant and into benignand malignant sub-classes are compared.
Abstract: In recent years, the classification of breast cancer has been the topic of interest in the field of Healthcare informatics, because it is the second main cause of cancer-related deaths in women. Breast cancer can be identified using a biopsy where tissue is removed and studied under microscope. The diagnosis is based on the qualification of the histopathologist, who will look for abnormal cells. However, if the histopathologist is not well-trained, this may lead to wrong diagnosis. With the recent advances in image processing and machine learning, there is an interest in attempting to develop a reliable pattern recognition based systems to improve the quality of diagnosis. In this paper, we compare two machine learning approaches for the automatic classification of breast cancer histology images into benign and malignant and into benign and malignant sub-classes. The first approach is based on the extraction of a set of handcrafted features encoded by two coding models (bag of words and locality constrained linear coding) and trained by support vector machines, while the second approach is based on the design of convolutional neural networks. We have also experimentally tested dataset augmentation techniques to enhance the accuracy of the convolutional neural network as well as “handcrafted features + convolutional neural network” and “ convolutional neural network features + classifier” configurations. The results show convolutional neural networks outperformed the handcrafted feature based classifier, where we achieved accuracy between 96.15% and 98.33% for the binary classification and 83.31% and 88.23% for the multi-class classification.

282 citations