scispace - formally typeset
Search or ask a question
Author

Abhay Deshpande

Bio: Abhay Deshpande is an academic researcher from Yale University. The author has contributed to research in topics: HERA & Muon. The author has an hindex of 26, co-authored 59 publications receiving 2863 citations. Previous affiliations of Abhay Deshpande include Stony Brook University & Ludwig Maximilian University of Munich.


Papers
More filters
Posted Content
R. Abdul Khalek, Alberto Accardi, Jaroslav Adam, D. Adamiak  +408 moreInstitutions (1)
TL;DR: The physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider are described, providing the basis for a world-class experimental program that aims to increase the understanding of the fundamental structure of all visible matter.
Abstract: This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United States with the capability to collide high-energy electron beams with high-energy proton and ion beams, providing access to those regions in the nucleon and nuclei where their structure is dominated by gluons. Moreover, polarized beams in the EIC will give unprecedented access to the spatial and spin structure of the proton, neutron, and light ions. The studies leading to this document were commissioned and organized by the EIC User Group with the objective of advancing the state and detail of the physics program and developing detector concepts that meet the emerging requirements in preparation for the realization of the EIC. The effort aims to provide the basis for further development of concepts for experimental equipment best suited for the science needs, including the importance of two complementary detectors and interaction regions. This report consists of three volumes. Volume I is an executive summary of our findings and developed concepts. In Volume II we describe studies of a wide range of physics measurements and the emerging requirements on detector acceptance and performance. Volume III discusses general-purpose detector concepts and the underlying technologies to meet the physics requirements. These considerations will form the basis for a world-class experimental program that aims to increase our understanding of the fundamental structure of all visible matter

304 citations

Journal ArticleDOI
Bernardo Adeva1, Taylan Akdogan2, E. Arik2, A. Arvidson3  +196 moreInstitutions (43)
TL;DR: In this article, the spin asymmetries A1 and the spin structure functions g1 of the proton and the deuteron in the kinematic range 0.0008
Abstract: We present the final results of the spin asymmetries A1 and the spin structure functions g1 of the proton and the deuteron in the kinematic range 0.0008

250 citations

Posted Content
TL;DR: In this paper, the authors summarized the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years.
Abstract: This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years.

246 citations

Journal Article
TL;DR: The science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community, is presented in this paper.
Abstract: Abstract.This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focused ten-week program on “Gluons and quark sea at high energies” at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users’ communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.

229 citations

Journal ArticleDOI
TL;DR: In this paper, the results of a next-to-leading-order QCD analysis of the ZEUS data on deep inelastic scattering together with fixed-target data were performed, from which the gluon and quark densities of the proton and the value of the strong coupling constant alpha(s)(M-Z) were extracted.
Abstract: Next-to-leading-order QCD analyses of the ZEUS data on deep inelastic scattering together with fixed-target data have been performed, from which the gluon and quark densities of the proton and the value of the strong coupling constant alpha(s)(M-Z) were extracted. The study includes a full treatment of the experimental systematic uncertainties including point-to-point correlations. The resulting uncertainties in the parton density functions are presented. A combined fit for alpha(s)(M-Z) and the gluon and quark densities yields a value for alpha(s)(M-Z) in agreement with the world average. The parton density functions derived from ZEUS data alone indicate the importance of HERA data in determining the sea quark and gluon distributions at low x. The limits of applicability of the theoretical formalism have been explored by comparing the fit predictions to ZEUS data at very low Q(2).

187 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented an updated leading-order, next-to-leading order and next-next-ordering order parton distribution function (MSTW 2008) determined from global analysis of hard-scattering data within the standard framework of leading-twist fixed-order collinear factorisation in the $\overline{\mathrm{MS}}$¯¯$¯¯¯¯¯
Abstract: We present updated leading-order, next-to-leading order and next-to-next-to-leading order parton distribution functions (“MSTW 2008”) determined from global analysis of hard-scattering data within the standard framework of leading-twist fixed-order collinear factorisation in the $\overline{\mathrm{MS}}$ scheme. These parton distributions supersede the previously available “MRST” sets and should be used for the first LHC data taking and for the associated theoretical calculations. New data sets fitted include CCFR/NuTeV dimuon cross sections, which constrain the strange-quark and -antiquark distributions, and Tevatron Run II data on inclusive jet production, the lepton charge asymmetry from W decays and the Z rapidity distribution. Uncertainties are propagated from the experimental errors on the fitted data points using a new dynamic procedure for each eigenvector of the covariance matrix. We discuss the major changes compared to previous MRST fits, briefly compare to parton distributions obtained by other fitting groups, and give predictions for the W and Z total cross sections at the Tevatron and LHC.

3,546 citations

Journal ArticleDOI
TL;DR: In this article, the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3 is presented, which includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinations, all relevant LHC Data for which experimental systematic uncertainties are currently available: ATLAS and LHCb W and Z rapidity distributions from the 2010 run, CMS W electron asymmetry data from the 2011 run,

1,809 citations

Journal ArticleDOI
TL;DR: In this article, the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community, is presented.
Abstract: This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focused ten-week program on “Gluons and quark sea at high energies” at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users’ communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.

1,022 citations