scispace - formally typeset
Search or ask a question
Author

Abhishek C. Lokhande

Bio: Abhishek C. Lokhande is an academic researcher from Khalifa University. The author has contributed to research in topics: Thin film & Supercapacitor. The author has an hindex of 29, co-authored 100 publications receiving 2642 citations. Previous affiliations of Abhishek C. Lokhande include Chonnam National University & Sinhgad Institute of Technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
01 Feb 2018-Small
TL;DR: This work demonstrates a possible pathway to develop a highly active and durable substitute for noble metal electrocatalysts for overall water splitting by a simple and rapid electrodeposition method on nickel foam.
Abstract: Highly efficient and stable electrocatalysts from inexpensive and earth-abundant elements are emerging materials in the overall water splitting process. Herein, cobalt iron hydroxide nanosheets are directly deposited on nickel foam by a simple and rapid electrodeposition method. The cobalt iron hydroxide (CoFe/NF) nanosheets not only allow good exposure of the highly active surface area but also facilitate the mass and charge transport capability. As an anode, the CoFe/NF electrocatalyst displays excellent oxygen evolution reaction catalytic activity with an overpotential of 220 mV at a current density of 10 mA cm-2 . As a cathode, it exhibits good performance in the hydrogen evolution reaction with an overpotential of 110 mV, reaching a current density of 10 mA cm-2 . When CoFe/NF electrodes are used as the anode and the cathode for water splitting, a low cell voltage of 1.64 V at 10 mA cm-2 and excellent stability for 50 h are observed. The present work demonstrates a possible pathway to develop a highly active and durable substitute for noble metal electrocatalysts for overall water splitting.

166 citations

Journal ArticleDOI
TL;DR: Among all prepared particles, ZnO nanoparticles with least size exhibited remarkable antibacterial and antibiofilm activity which may serve as potential alternatives in biomedical application.
Abstract: The present investigation deals with facile polyol mediated synthesis and characterization of ZnO nanoparticles and their antimicrobial activities against pathogenic microorganisms. The synthesis process was carried out by refluxing zinc acetate precursor in diethylene glycol(DEG) and triethylene glycol(TEG) in the presence and in the absence of sodium acetate for 2 h and 3 h. All synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD), UV visible spectroscopy (UV), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy(FESEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) technique. All nanoparticles showed different degree of antibacterial and antibiofilm activity against Gram-positive Staphylococcus aureus (NCIM 2654)and Gram-negative Proteus vulgaris (NCIM 2613). The antibacterial and antibiofilm activity was inversely proportional to the size of the synthesized ZnO nanoparticles. Among all prepared particles, ZnO nanoparticles with least size (~ 15 nm) prepared by refluxing zinc acetate dihydrate in diethylene glycol for 3 h exhibited remarkable antibacterial and antibiofilm activity which may serve as potential alternatives in biomedical application.

146 citations

Journal ArticleDOI
TL;DR: The replacement of noble-metal-based electrocatalysts with earth-abundant, low-cost bifunctional electrocalysts for efficient hydrogen generation is required as discussed by the authors.
Abstract: The replacement of noble-metal-based electrocatalysts with earth-abundant, low-cost bifunctional electrocatalysts for efficient hydrogen generation is required. Herein, an amorphous and porous 2D N...

144 citations

Journal ArticleDOI
TL;DR: In this article, bare nickel foam (NF) was used as conductive substrate and precursor to grow a porous nickel oxide (NiO) using a simple and scalable thermal oxidation method, and the obtained NiO supported on NF is used as binder-free electrocatalyst for the oxygen evolution reaction (OER).

137 citations

Journal ArticleDOI
TL;DR: In this article, the power conversion efficiency (PCE) based on CTS based absorber compound has been improved from 0.11% to 4.63% by developing the physical synthesis techniques.

129 citations


Cited by
More filters
01 Nov 2000
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.

2,437 citations

Journal ArticleDOI
TL;DR: The state-of-the-art advancements in FSSCs are reviewed to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs.
Abstract: Flexible solid-state supercapacitors (FSSCs) are frontrunners in energy storage device technology and have attracted extensive attention owing to recent significant breakthroughs in modern wearable electronics In this study, we review the state-of-the-art advancements in FSSCs to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs The review begins with a brief introduction on the fundamental understanding of charge storage mechanisms based on the structural properties of electrode materials The next sections briefly summarise the latest progress in flexible electrodes (ie, freestanding and substrate-supported, including textile, paper, metal foil/wire and polymer-based substrates) and flexible gel electrolytes (ie, aqueous, organic, ionic liquids and redox-active gels) Subsequently, a comprehensive summary of FSSC cell designs introduces some emerging electrode materials, including MXenes, metal nitrides, metal–organic frameworks (MOFs), polyoxometalates (POMs) and black phosphorus Some potential practical applications, such as the development of piezoelectric, photo-, shape-memory, self-healing, electrochromic and integrated sensor-supercapacitors are also discussed The final section highlights current challenges and future perspectives on research in this thriving field

1,210 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent advances in supercapacitor (SC) technology with respect to charge storage mechanisms, electrode materials, electrolytes (e.g., particularly paper/fiber-like 3D porous structures), and their practical applications is presented.

1,058 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the recent advances in the field of composite materials that include at least one carbon-based component for supercapacitor electrodes, focusing on cases in which a single material by itself suffers from a drawback that can be overcome by combining it with other components, enabling the fabrication of a composite material with enhanced performance.
Abstract: Electrochemical capacitors, so-called supercapacitors, play an important role in energy storage and conversion systems. In the last decade, with the increasing volume of scientific activity and publications in this field, researchers have developed better tools to improve electrode materials. Although carbonaceous materials seem the most suitable for supercapacitor applications, a large diversity of materials has been proposed and studied. Yet, in order to accomplish performance beyond the limitations of each material, mainly in terms of energy density and durability, composite materials have been implemented, most of them being the combinations of carbon-based materials and other components. In this review, we present the recent advances in the field of composite materials that include at least one carbon-based component for supercapacitor electrodes. We focus on cases in which a single material by itself suffers from a drawback that can be overcome by combining it with other components, enabling the fabrication of a composite material with enhanced performance. We present several important compositions as well as the major routes of synthesis, characterization and performance of composite materials in this field.

1,042 citations

Journal ArticleDOI
TL;DR: An overview of the energy storage devices from conventional capacitors to supercapacitors to hybrid systems and ultimately to batteries is provided, although the focus is kept on capacitive and hybrid energy storage systems.
Abstract: Over the past decade, electrochemical energy storage (EES) devices have greatly improved, as a wide variety of advanced electrode active materials and new device architectures have been developed. These new materials and devices should be evaluated against clear and rigorous metrics, primarily based on the evidence of real performances. A series of criteria are commonly used to characterize and report performance of EES systems in the literature. However, as advanced EES systems are becoming more and more sophisticated, the methodologies to reliably evaluate the performance of the electrode active materials and EES devices need to be refined to realize the true promise as well as the limitations of these fast-moving technologies, and target areas for further development. In the absence of a commonly accepted core group of metrics, inconsistencies may arise between the values attributed to the materials or devices and their real performances. Herein, we provide an overview of the energy storage devices from conventional capacitors to supercapacitors to hybrid systems and ultimately to batteries. The metrics for evaluation of energy storage systems are described, although the focus is kept on capacitive and hybrid energy storage systems. In addition, we discuss the challenges that still need to be addressed for establishing more sophisticated criteria for evaluating EES systems. We hope this effort will foster ongoing dialog and promote greater understanding of these metrics to develop an international protocol for accurate assessment of EES systems.

695 citations