scispace - formally typeset
Search or ask a question
Author

Abhishek Chaurasia

Other affiliations: Micron Technology
Bio: Abhishek Chaurasia is an academic researcher from Purdue University. The author has contributed to research in topics: Computer science & Artificial neural network. The author has an hindex of 4, co-authored 5 publications receiving 1839 citations. Previous affiliations of Abhishek Chaurasia include Micron Technology.

Papers
More filters
Posted Content
TL;DR: A novel deep neural network architecture named ENet (efficient neural network), created specifically for tasks requiring low latency operation, which is up to 18 times faster, requires 75% less FLOPs, has 79% less parameters, and provides similar or better accuracy to existing models.
Abstract: The ability to perform pixel-wise semantic segmentation in real-time is of paramount importance in mobile applications. Recent deep neural networks aimed at this task have the disadvantage of requiring a large number of floating point operations and have long run-times that hinder their usability. In this paper, we propose a novel deep neural network architecture named ENet (efficient neural network), created specifically for tasks requiring low latency operation. ENet is up to 18$\times$ faster, requires 75$\times$ less FLOPs, has 79$\times$ less parameters, and provides similar or better accuracy to existing models. We have tested it on CamVid, Cityscapes and SUN datasets and report on comparisons with existing state-of-the-art methods, and the trade-offs between accuracy and processing time of a network. We present performance measurements of the proposed architecture on embedded systems and suggest possible software improvements that could make ENet even faster.

1,703 citations

Proceedings ArticleDOI
14 Jun 2017
TL;DR: In this paper, the authors proposed a novel deep neural network architecture which allows it to learn without any significant increase in number of parameters and achieves state-of-the-art performance on CamVid and Cityscapes dataset.
Abstract: Pixel-wise semantic segmentation for visual scene understanding not only needs to be accurate, but also efficient in order to find any use in real-time application. Existing algorithms even though are accurate but they do not focus on utilizing the parameters of neural network efficiently. As a result they are huge in terms of parameters and number of operations; hence slow too. In this paper, we propose a novel deep neural network architecture which allows it to learn without any significant increase in number of parameters. Our network uses only 11.5 million parameters and 21.2 GFLOPs for processing an image of resolution 3 × 640 × 360. It gives state-of-the-art performance on CamVid and comparable results on Cityscapes dataset. We also compare our networks processing time on NVIDIA GPU and embedded system device with existing state-of-the-art architectures for different image resolutions.

1,015 citations

Journal ArticleDOI
TL;DR: It is demonstrated that smNet can extract three-dimensional molecule location, orientation, and wavefront distortion with precision approaching the theoretical limit, and therefore will allow multiplexed measurements through the emission pattern of a single molecule.
Abstract: A fluorescent emitter simultaneously transmits its identity, location, and cellular context through its emission pattern. We developed smNet, a deep neural network for multiplexed single-molecule analysis to retrieve such information with high accuracy. We demonstrate that smNet can extract three-dimensional molecule location, orientation, and wavefront distortion with precision approaching the theoretical limit, and therefore will allow multiplexed measurements through the emission pattern of a single molecule.

71 citations

Proceedings ArticleDOI
14 Jun 2017
TL;DR: This paper proposes a novel deep neural network architecture which allows it to learn without any significant increase in number of parameters and gives state-of-the-art performance on CamVid and comparable results on Cityscapes dataset.
Abstract: Pixel-wise semantic segmentation for visual scene understanding not only needs to be accurate, but also efficient in order to find any use in real-time application. Existing algorithms even though are accurate but they do not focus on utilizing the parameters of neural network efficiently. As a result they are huge in terms of parameters and number of operations; hence slow too. In this paper, we propose a novel deep neural network architecture which allows it to learn without any significant increase in number of parameters. Our network uses only 11.5 million parameters and 21.2 GFLOPs for processing an image of resolution 3x640x360. It gives state-of-the-art performance on CamVid and comparable results on Cityscapes dataset. We also compare our networks processing time on NVIDIA GPU and embedded system device with existing state-of-the-art architectures for different image resolutions.

47 citations

Journal ArticleDOI
TL;DR: This work proposes changes to the fusion block that are simple and effective to create MobileViTv3-block, which addresses the scaling and simplifies the learning task and gives better accuracy numbers on ImageNet-1k, ADE20K, COCO and PascalVOC2012 datasets as compared to Mobile ViTv2.
Abstract: MobileViT (MobileViTv1) combines convolutional neural networks (CNNs) and vision transformers (ViTs) to create light-weight models for mobile vision tasks. Though the main MobileViTv1-block helps to achieve competitive state-of-the-art results, the fusion block inside MobileViTv1-block, creates scaling challenges and has a complex learning task. We propose changes to the fusion block that are simple and effective to create MobileViTv3-block, which addresses the scaling and simplifies the learning task. Our proposed MobileViTv3-block used to create MobileViTv3-XXS, XS and S models outperform MobileViTv1 on ImageNet-1k, ADE20K, COCO and PascalVOC2012 datasets. On ImageNet-1K, MobileViTv3-XXS and MobileViTv3-XS surpasses MobileViTv1-XXS and MobileViTv1-XS by 2% and 1.9% respectively. Recently published MobileViTv2 architecture removes fusion block and uses linear complexity transformers to perform better than MobileViTv1. We add our proposed fusion block to MobileViTv2 to create MobileViTv3-0.5, 0.75 and 1.0 models. These new models give better accuracy numbers on ImageNet-1k, ADE20K, COCO and PascalVOC2012 datasets as compared to MobileViTv2. MobileViTv3-0.5 and MobileViTv3-0.75 outperforms MobileViTv2-0.5 and MobileViTv2-0.75 by 2.1% and 1.0% respectively on ImageNet-1K dataset. For segmentation task, MobileViTv3-1.0 achieves 2.07% and 1.1% better mIOU compared to MobileViTv2-1.0 on ADE20K dataset and PascalVOC2012 dataset respectively. Our code and the trained models are available at: https://github.com/micronDLA/MobileViTv3

11 citations


Cited by
More filters
Book ChapterDOI
08 Sep 2018
TL;DR: BiSeNet as discussed by the authors designs a spatial path with a small stride to preserve the spatial information and generate high-resolution features, while a context path with fast downsampling strategy is employed to obtain sufficient receptive field.
Abstract: Semantic segmentation requires both rich spatial information and sizeable receptive field. However, modern approaches usually compromise spatial resolution to achieve real-time inference speed, which leads to poor performance. In this paper, we address this dilemma with a novel Bilateral Segmentation Network (BiSeNet). We first design a Spatial Path with a small stride to preserve the spatial information and generate high-resolution features. Meanwhile, a Context Path with a fast downsampling strategy is employed to obtain sufficient receptive field. On top of the two paths, we introduce a new Feature Fusion Module to combine features efficiently. The proposed architecture makes a right balance between the speed and segmentation performance on Cityscapes, CamVid, and COCO-Stuff datasets. Specifically, for a 2048 \(\times \) 1024 input, we achieve 68.4% Mean IOU on the Cityscapes test dataset with speed of 105 FPS on one NVIDIA Titan XP card, which is significantly faster than the existing methods with comparable performance.

1,547 citations

Journal ArticleDOI
TL;DR: UNet++ as mentioned in this paper proposes an efficient ensemble of U-Nets of varying depths, which partially share an encoder and co-learn simultaneously using deep supervision, leading to a highly flexible feature fusion scheme.
Abstract: The state-of-the-art models for medical image segmentation are variants of U-Net and fully convolutional networks (FCN). Despite their success, these models have two limitations: (1) their optimal depth is apriori unknown, requiring extensive architecture search or inefficient ensemble of models of varying depths; and (2) their skip connections impose an unnecessarily restrictive fusion scheme, forcing aggregation only at the same-scale feature maps of the encoder and decoder sub-networks. To overcome these two limitations, we propose UNet++, a new neural architecture for semantic and instance segmentation, by (1) alleviating the unknown network depth with an efficient ensemble of U-Nets of varying depths, which partially share an encoder and co-learn simultaneously using deep supervision; (2) redesigning skip connections to aggregate features of varying semantic scales at the decoder sub-networks, leading to a highly flexible feature fusion scheme; and (3) devising a pruning scheme to accelerate the inference speed of UNet++. We have evaluated UNet++ using six different medical image segmentation datasets, covering multiple imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and electron microscopy (EM), and demonstrating that (1) UNet++ consistently outperforms the baseline models for the task of semantic segmentation across different datasets and backbone architectures; (2) UNet++ enhances segmentation quality of varying-size objects—an improvement over the fixed-depth U-Net; (3) Mask RCNN++ (Mask R-CNN with UNet++ design) outperforms the original Mask R-CNN for the task of instance segmentation; and (4) pruned UNet++ models achieve significant speedup while showing only modest performance degradation. Our implementation and pre-trained models are available at https://github.com/MrGiovanni/UNetPlusPlus .

1,487 citations

Journal ArticleDOI
TL;DR: A deep architecture that is able to run in real time while providing accurate semantic segmentation, and a novel layer that uses residual connections and factorized convolutions in order to remain efficient while retaining remarkable accuracy is proposed.
Abstract: Semantic segmentation is a challenging task that addresses most of the perception needs of intelligent vehicles (IVs) in an unified way. Deep neural networks excel at this task, as they can be trained end-to-end to accurately classify multiple object categories in an image at pixel level. However, a good tradeoff between high quality and computational resources is yet not present in the state-of-the-art semantic segmentation approaches, limiting their application in real vehicles. In this paper, we propose a deep architecture that is able to run in real time while providing accurate semantic segmentation. The core of our architecture is a novel layer that uses residual connections and factorized convolutions in order to remain efficient while retaining remarkable accuracy. Our approach is able to run at over 83 FPS in a single Titan X, and 7 FPS in a Jetson TX1 (embedded device). A comprehensive set of experiments on the publicly available Cityscapes data set demonstrates that our system achieves an accuracy that is similar to the state of the art, while being orders of magnitude faster to compute than other architectures that achieve top precision. The resulting tradeoff makes our model an ideal approach for scene understanding in IV applications. The code is publicly available at: https://github.com/Eromera/erfnet

1,134 citations

Proceedings ArticleDOI
14 Jun 2017
TL;DR: In this paper, the authors proposed a novel deep neural network architecture which allows it to learn without any significant increase in number of parameters and achieves state-of-the-art performance on CamVid and Cityscapes dataset.
Abstract: Pixel-wise semantic segmentation for visual scene understanding not only needs to be accurate, but also efficient in order to find any use in real-time application. Existing algorithms even though are accurate but they do not focus on utilizing the parameters of neural network efficiently. As a result they are huge in terms of parameters and number of operations; hence slow too. In this paper, we propose a novel deep neural network architecture which allows it to learn without any significant increase in number of parameters. Our network uses only 11.5 million parameters and 21.2 GFLOPs for processing an image of resolution 3 × 640 × 360. It gives state-of-the-art performance on CamVid and comparable results on Cityscapes dataset. We also compare our networks processing time on NVIDIA GPU and embedded system device with existing state-of-the-art architectures for different image resolutions.

1,015 citations

Posted Content
TL;DR: A review on deep learning methods for semantic segmentation applied to various application areas as well as mandatory background concepts to help researchers decide which are the ones that best suit their needs and their targets.
Abstract: Image semantic segmentation is more and more being of interest for computer vision and machine learning researchers. Many applications on the rise need accurate and efficient segmentation mechanisms: autonomous driving, indoor navigation, and even virtual or augmented reality systems to name a few. This demand coincides with the rise of deep learning approaches in almost every field or application target related to computer vision, including semantic segmentation or scene understanding. This paper provides a review on deep learning methods for semantic segmentation applied to various application areas. Firstly, we describe the terminology of this field as well as mandatory background concepts. Next, the main datasets and challenges are exposed to help researchers decide which are the ones that best suit their needs and their targets. Then, existing methods are reviewed, highlighting their contributions and their significance in the field. Finally, quantitative results are given for the described methods and the datasets in which they were evaluated, following up with a discussion of the results. At last, we point out a set of promising future works and draw our own conclusions about the state of the art of semantic segmentation using deep learning techniques.

998 citations