scispace - formally typeset
Search or ask a question
Author

Abhishek Kumar Misra

Bio: Abhishek Kumar Misra is an academic researcher from University of Manchester. The author has contributed to research in topics: Liquid crystal & Dielectric. The author has an hindex of 19, co-authored 74 publications receiving 1203 citations. Previous affiliations of Abhishek Kumar Misra include Indian Institute of Technology Bombay & University of Lucknow.


Papers
More filters
Journal ArticleDOI
13 Jun 2018
TL;DR: In this article, the authors studied tunnelling through thin ferromagnetic chromium tribromide (CrBr3) barriers that are sandwiched between graphene electrodes, which could allow two-dimensional spintronic devices to be developed.
Abstract: Van der Waals heterostructures, which are composed of layered two-dimensional materials, offer a platform to investigate a diverse range of physical phenomena and could be of use in a variety of applications. Heterostructures containing two-dimensional ferromagnets, such as chromium triiodide (CrI3), have recently been reported, which could allow two-dimensional spintronic devices to be developed. Here we study tunnelling through thin ferromagnetic chromium tribromide (CrBr3) barriers that are sandwiched between graphene electrodes. In devices with non-magnetic barriers, conservation of momentum can be relaxed by phonon-assisted tunnelling or by tunnelling through localized states. In contrast, in the devices with ferromagnetic barriers, the major tunnelling mechanisms are the emission of magnons at low temperatures and the scattering of electrons on localized magnetic excitations at temperatures above the Curie temperature. Magnetoresistance in the graphene electrodes further suggests induced spin–orbit coupling and proximity exchange via the ferromagnetic barrier. Tunnelling with magnon emission offers the possibility of spin injection.

233 citations

Journal Article
TL;DR: In this article, the authors studied tunnelling through thin ferromagnetic chromium tribromide (CrBr3) barriers that are sandwiched between graphene electrodes, which suggests that these magnetic tunnel barriers could be used for spin injection.
Abstract: Van der Waals heterostructures, which are composed of layered two-dimensional materials, offer a platform to investigate a diverse range of physical phenomena and could be of use in a variety of applications. Heterostructures containing two-dimensional ferromagnets, such as chromium triiodide (CrI3), have recently been reported, which could allow two-dimensional spintronic devices to be developed. Here we study tunnelling through thin ferromagnetic chromium tribromide (CrBr3) barriers that are sandwiched between graphene electrodes. In devices with non-magnetic barriers, conservation of momentum can be relaxed by phonon-assisted tunnelling or by tunnelling through localized states. In contrast, in the devices with ferromagnetic barriers, the major tunnelling mechanisms are the emission of magnons at low temperatures and the scattering of electrons on localized magnetic excitations at temperatures above the Curie temperature. Magnetoresistance in the graphene electrodes further suggests induced spin–orbit coupling and proximity exchange via the ferromagnetic barrier. Tunnelling with magnon emission offers the possibility of spin injection.Electrons can tunnel through thin ferromagnetic CrBr3 barriers, sandwiched between graphene electrodes, via the emission of magnons, which suggests that these magnetic tunnel barriers could be used for spin injection.

111 citations

Journal ArticleDOI
TL;DR: A series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages are observed, attributed to electron tunneling assisted by the emission of phonons of well-defined energy.
Abstract: We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states.

82 citations

Journal ArticleDOI
05 Aug 2016-Science
TL;DR: The direct observation and manipulation of chirality and pseudospin polarization in the tunneling of electrons between two almost perfectly aligned graphene crystals are reported and a technique for preparing graphene’s Dirac electrons in a particular quantum chiral state in a selected valley is demonstrated.
Abstract: Chirality is a fundamental property of electrons with the relativistic spectrum found in graphene and topological insulators. It plays a crucial role in relativistic phenomena, such as Klein tunneling, but it is difficult to visualize directly. Here, we report the direct observation and manipulation of chirality and pseudospin polarization in the tunneling of electrons between two almost perfectly aligned graphene crystals. We use a strong in-plane magnetic field as a tool to resolve the contributions of the chiral electronic states that have a phase difference between the two components of their vector wave function. Our experiments not only shed light on chirality, but also demonstrate a technique for preparing graphene’s Dirac electrons in a particular quantum chiral state in a selected valley.

80 citations

Journal ArticleDOI
TL;DR: In this paper, the dielectric and electro-optical study of inorganic ZnO (Cu 1%) nanoparticles doped nematic liquid crystal (5CB) is reported.
Abstract: The present study reports the dielectric and electro-optical study of inorganic ZnO (Cu 1%) nanoparticles doped nematic liquid crystal (5CB). The dielectric permittivity is found to decrease in the nano doped sample. Nanoparticle doped liquid crystal has good response under various conditions to evaluate their potential as electro-optical materials for various purposes. From electro-optical study we have found Freedricksz transition voltage Vth and response time τ0 and hence K11 and rotational viscosity γ are also calculated. It is found that K11 and Vth increases for nano-doped sample. Rotational viscosity γ also increases for the nanoparticle doped sample. These changes have been explained in this article according to Osipov and Ternentjev theory of rotational viscosity of nematic liquid crystal.

70 citations


Cited by
More filters
Journal ArticleDOI
15 Feb 2019-Science
TL;DR: Recognizing that magnetic anisotropy can be used to induce stable magnetism in atomic monolayers, Gong and Zhang provide an overview of the materials available and the physical understanding of the effects and then discuss how these effects could be exploited for widespread practical applications.
Abstract: Magnetism, originating from the moving charges and spin of elementary particles, has revolutionized important technologies such as data storage and biomedical imaging, and continues to bring forth new phenomena in emergent materials and reduced dimensions. The recently discovered two-dimensional (2D) magnetic van der Waals crystals provide ideal platforms for understanding 2D magnetism, the control of which has been fueling opportunities for atomically thin, flexible magneto-optic and magnetoelectric devices (such as magnetoresistive memories and spin field-effect transistors). The seamless integration of 2D magnets with dissimilar electronic and photonic materials opens up exciting possibilities for unprecedented properties and functionalities. We review the progress in this area and identify the possible directions for device applications, which may lead to advances in spintronics, sensors, and computing.

1,059 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the difference between magnetic states in 2D materials and in bulk crystals and present an overview of the 2D magnets that have been explored recently, focusing on the case of the two most studied systems-semiconducting CrI3 and metallic Fe3GeTe2.
Abstract: The family of two-dimensional (2D) materials grows day by day, hugely expanding the scope of possible phenomena to be explored in two dimensions, as well as the possible van der Waals (vdW) heterostructures that one can create. Such 2D materials currently cover a vast range of properties. Until recently, this family has been missing one crucial member: 2D magnets. The situation has changed over the past 2 years with the introduction of a variety of atomically thin magnetic crystals. Here we will discuss the difference between magnetic states in 2D materials and in bulk crystals and present an overview of the 2D magnets that have been explored recently. We will focus on the case of the two most studied systems-semiconducting CrI3 and metallic Fe3GeTe2-and illustrate the physical phenomena that have been observed. Special attention will be given to the range of new van der Waals heterostructures that became possible with the appearance of 2D magnets, offering new perspectives in this rapidly expanding field.

895 citations

Journal ArticleDOI
19 Mar 2013-ACS Nano
TL;DR: In this article, the authors combine the unique electronic properties of semiconducting monolayer MoS2 with the high conductivity of graphene to build a 2D heterostructure capable of information storage.
Abstract: Memory cells are an important building block of digital electronics We combine here the unique electronic properties of semiconducting monolayer MoS2 with the high conductivity of graphene to build a 2D heterostructure capable of information storage MoS2 acts as a channel in an intimate contact with graphene electrodes in a field-effect transistor geometry Our prototypical all-2D transistor is further integrated with a multilayer graphene charge trapping layer into a device that can be operated as a nonvolatile memory cell Because of its band gap and 2D nature, monolayer MoS2 is highly sensitive to the presence of charges in the charge trapping layer, resulting in a factor of 10(4) difference between memory program and erase states The two-dimensional nature of both the contact and the channel can be harnessed for the fabrication of flexible nanoelectronic devices with large-scale integration

889 citations

Journal ArticleDOI
TL;DR: This work combines the unique electronic properties of semiconducting monolayer MoS2 with the high conductivity of graphene to build a 2D heterostructure capable of information storage.
Abstract: Memory cells are an important building block of digital electronics. We combine here the unique electronic properties of semiconducting monolayer MoS2 with the high conductivity of graphene to build a 2D heterostructure capable of information storage. MoS2 acts as a channel in an intimate contact with graphene electrodes in a field-effect transistor geometry. Our prototypical all-2D transistor is further integrated with a multilayer graphene charge trapping layer into a device that can be operated as a nonvolatile memory cell. Because of its band gap and 2D nature, monolayer MoS2 is highly sensitive to the presence of charges in the charge trapping layer, resulting in a factor of 10000 difference between memory program and erase states. The two-dimensional nature of both the contact and the channel can be harnessed for the fabrication of flexible nanoelectronic devices with large-scale integration.

787 citations