scispace - formally typeset
Search or ask a question
Author

Abhishek Sharma

Bio: Abhishek Sharma is an academic researcher from École Polytechnique. The author has contributed to research in topics: Deep learning & Supervised learning. The author has an hindex of 7, co-authored 22 publications receiving 456 citations. Previous affiliations of Abhishek Sharma include Intel & University of Maryland, College Park.

Papers
More filters
Book ChapterDOI
08 Oct 2016
TL;DR: With the advent of affordable depth sensors, 3D capture becomes more and more ubiquitous and already has made its way into commercial products but still comes with several challenges that result in noise or even incomplete shapes.
Abstract: With the advent of affordable depth sensors, 3D capture becomes more and more ubiquitous and already has made its way into commercial products. Yet, capturing the geometry or complete shapes of everyday objects using scanning devices (e.g. Kinect) still comes with several challenges that result in noise or even incomplete shapes.

260 citations

Journal ArticleDOI
TL;DR: In this paper, a simple and efficient method for refining maps or correspondences by iterative upsampling in the spectral domain that can be implemented in a few lines of code is presented.
Abstract: We present a simple and efficient method for refining maps or correspondences by iterative upsampling in the spectral domain that can be implemented in a few lines of code. Our main observation is that high quality maps can be obtained even if the input correspondences are noisy or are encoded by a small number of coefficients in a spectral basis. We show how this approach can be used in conjunction with existing initialization techniques across a range of application scenarios, including symmetry detection, map refinement across complete shapes, non-rigid partial shape matching and function transfer. In each application we demonstrate an improvement with respect to both the quality of the results and the computational speed compared to the best competing methods, with up to two orders of magnitude speed-up in some applications. We also demonstrate that our method is both robust to noisy input and is scalable with respect to shape complexity. Finally, we present a theoretical justification for our approach, shedding light on structural properties of functional maps.

98 citations

Proceedings ArticleDOI
14 Jun 2020
TL;DR: This work presents a novel learning-based approach for computing correspondences between non-rigid 3D shapes that can learn from less training data than existing supervised approaches and generalizes significantly better than current descriptor-based learning methods.
Abstract: We present a novel learning-based approach for computing correspondences between non-rigid 3D shapes. Unlike previous methods that either require extensive training data or operate on handcrafted input descriptors and thus generalize poorly across diverse datasets, our approach is both accurate and robust to changes in shape structure. Key to our method is a feature-extraction network that learns directly from raw shape geometry, combined with a novel regularized map extraction layer and loss, based on the functional map representation. We demonstrate through extensive experiments in challenging shape matching scenarios that our method can learn from less training data than existing supervised approaches and generalizes significantly better than current descriptor-based learning methods. Our source code is available at: https://github.com/LIX-shape-analysis/GeomFmaps.

90 citations

Proceedings ArticleDOI
29 Oct 2019
TL;DR: SURFMNet as mentioned in this paper uses the functional maps framework to compute a non-linear transformation of given descriptor functions, while optimizing for global structural properties of the resulting maps, such as their bijectivity or approximate isometry.
Abstract: We present a novel method for computing correspondences across 3D shapes using unsupervised learning. Our method computes a non-linear transformation of given descriptor functions, while optimizing for global structural properties of the resulting maps, such as their bijectivity or approximate isometry. To this end, we use the functional maps framework, and build upon the recent FMNet architecture for descriptor learning. Unlike that approach, however, we show that learning can be done in a purely \emph{unsupervised setting}, without having access to any ground truth correspondences. This results in a very general shape matching method that we call SURFMNet for Spectral Unsupervised FMNet, and which can be used to establish correspondences within 3D shape collections without any prior information. We demonstrate on a wide range of challenging benchmarks, that our approach leads to state-of-the-art results compared to the existing unsupervised methods and achieves results that are comparable even to the supervised learning techniques. Moreover, our framework is an order of magnitude faster, and does not rely on geodesic distance computation or expensive post-processing.

87 citations

Posted Content
TL;DR: In this paper, a volumetric auto encoder is proposed to learn volusetric representation from noisy data by estimating the voxel occupancy grids, and the obtained deep embedding gives competitive performance when used for classification and promising results for shape interpolation.
Abstract: With the advent of affordable depth sensors, 3D capture becomes more and more ubiquitous and already has made its way into commercial products. Yet, capturing the geometry or complete shapes of everyday objects using scanning devices (e.g. Kinect) still comes with several challenges that result in noise or even incomplete shapes. Recent success in deep learning has shown how to learn complex shape distributions in a data-driven way from large scale 3D CAD Model collections and to utilize them for 3D processing on volumetric representations and thereby circumventing problems of topology and tessellation. Prior work has shown encouraging results on problems ranging from shape completion to recognition. We provide an analysis of such approaches and discover that training as well as the resulting representation are strongly and unnecessarily tied to the notion of object labels. Thus, we propose a full convolutional volumetric auto encoder that learns volumetric representation from noisy data by estimating the voxel occupancy grids. The proposed method outperforms prior work on challenging tasks like denoising and shape completion. We also show that the obtained deep embedding gives competitive performance when used for classification and promising results for shape interpolation.

52 citations


Cited by
More filters
Reference EntryDOI
15 Oct 2004

2,118 citations

01 Jan 1979
TL;DR: This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis and addressing interesting real-world computer Vision and multimedia applications.
Abstract: In the real world, a realistic setting for computer vision or multimedia recognition problems is that we have some classes containing lots of training data and many classes contain a small amount of training data. Therefore, how to use frequent classes to help learning rare classes for which it is harder to collect the training data is an open question. Learning with Shared Information is an emerging topic in machine learning, computer vision and multimedia analysis. There are different level of components that can be shared during concept modeling and machine learning stages, such as sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, etc. Regarding the specific methods, multi-task learning, transfer learning and deep learning can be seen as using different strategies to share information. These learning with shared information methods are very effective in solving real-world large-scale problems. This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis. Both state-of-the-art works, as well as literature reviews, are welcome for submission. Papers addressing interesting real-world computer vision and multimedia applications are especially encouraged. Topics of interest include, but are not limited to: • Multi-task learning or transfer learning for large-scale computer vision and multimedia analysis • Deep learning for large-scale computer vision and multimedia analysis • Multi-modal approach for large-scale computer vision and multimedia analysis • Different sharing strategies, e.g., sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, • Real-world computer vision and multimedia applications based on learning with shared information, e.g., event detection, object recognition, object detection, action recognition, human head pose estimation, object tracking, location-based services, semantic indexing. • New datasets and metrics to evaluate the benefit of the proposed sharing ability for the specific computer vision or multimedia problem. • Survey papers regarding the topic of learning with shared information. Authors who are unsure whether their planned submission is in scope may contact the guest editors prior to the submission deadline with an abstract, in order to receive feedback.

1,758 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: The utility of the OctNet representation is demonstrated by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.
Abstract: We present OctNet, a representation for deep learning with sparse 3D data. In contrast to existing models, our representation enables 3D convolutional networks which are both deep and high resolution. Towards this goal, we exploit the sparsity in the input data to hierarchically partition the space using a set of unbalanced octrees where each leaf node stores a pooled feature representation. This allows to focus memory allocation and computation to the relevant dense regions and enables deeper networks without compromising resolution. We demonstrate the utility of our OctNet representation by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.

1,280 citations

01 Jan 2016
TL;DR: The linear and nonlinear programming is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can download it instantly.
Abstract: Thank you for downloading linear and nonlinear programming. As you may know, people have search numerous times for their favorite novels like this linear and nonlinear programming, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some infectious bugs inside their desktop computer. linear and nonlinear programming is available in our book collection an online access to it is set as public so you can download it instantly. Our digital library spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the linear and nonlinear programming is universally compatible with any devices to read.

943 citations

Posted Content
TL;DR: Wang et al. as discussed by the authors proposed a 3D Generative Adversarial Network (3D-GAN), which generates 3D objects from a probabilistic space by leveraging recent advances in volumetric convolutional networks and generative adversarial nets.
Abstract: We study the problem of 3D object generation. We propose a novel framework, namely 3D Generative Adversarial Network (3D-GAN), which generates 3D objects from a probabilistic space by leveraging recent advances in volumetric convolutional networks and generative adversarial nets. The benefits of our model are three-fold: first, the use of an adversarial criterion, instead of traditional heuristic criteria, enables the generator to capture object structure implicitly and to synthesize high-quality 3D objects; second, the generator establishes a mapping from a low-dimensional probabilistic space to the space of 3D objects, so that we can sample objects without a reference image or CAD models, and explore the 3D object manifold; third, the adversarial discriminator provides a powerful 3D shape descriptor which, learned without supervision, has wide applications in 3D object recognition. Experiments demonstrate that our method generates high-quality 3D objects, and our unsupervisedly learned features achieve impressive performance on 3D object recognition, comparable with those of supervised learning methods.

886 citations