scispace - formally typeset
Search or ask a question
Author

Abhishek Swarnkar

Bio: Abhishek Swarnkar is an academic researcher from Indian Institute of Science. The author has contributed to research in topics: Perovskite (structure) & Quantum dot. The author has an hindex of 16, co-authored 22 publications receiving 3738 citations. Previous affiliations of Abhishek Swarnkar include Swiss Federal Laboratories for Materials Science and Technology & National Renewable Energy Laboratory.

Papers
More filters
Journal ArticleDOI
07 Oct 2016-Science
TL;DR: N nanoscale phase stabilization of CsPbI3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices and describe the formation of α-CsP bI3 QD films that are phase-stable for months in ambient air.
Abstract: We show nanoscale phase stabilization of CsPbI 3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI 3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI 3 (α-CsPbI 3 )—the variant with desirable band gap—is only stable at high temperatures. We describe the formation of α-CsPbI 3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuit voltage of 1.23 volts and efficiency of 10.77%. These devices also function as light-emitting diodes with low turn-on voltage and tunable emission.

2,103 citations

Journal ArticleDOI
TL;DR: This work highlights the advantages in both ensemble and single-nanocrystal PL of colloidal CsPbBr3 nanocrystals (NCs) over the traditional cQDs and investigates batch-to-batch reproducibility of NCs exhibiting PL peaks within ±1 nm.
Abstract: Traditional CdSe-based colloidal quantum dots (cQDs) have interesting photoluminescence (PL) properties. Herein we highlight the advantages in both ensemble and single-nanocrystal PL of colloidal CsPbBr3 nanocrystals (NCs) over the traditional cQDs. An ensemble of colloidal CsPbBr3 NCs (11 nm) exhibits ca. 90 % PL quantum yield with narrow (FWHM=86 meV) spectral width. Interestingly, the spectral width of a single-NC and an ensemble are almost identical, ruling out the problem of size-distribution in PL broadening. Eliminating this problem leads to a negligible influence of self-absorption and Forster resonance energy transfer, along with batch-to-batch reproducibility of NCs exhibiting PL peaks within ±1 nm. Also, PL peak positions do not alter with measurement temperature in the range of 25 to 100 °C. Importantly, CsPbBr3 NCs exhibit suppressed PL blinking with ca. 90 % of the individual NCs remain mostly emissive (on-time >85 %), without much influence of excitation power.

917 citations

Journal ArticleDOI
TL;DR: These results confirm a negligible influence of surface defects in trapping charge carriers, which in turn results into desirable intrinsic transport properties, from the perspective of device applications, such as remarkably high carrier mobility, large diffusion length, and high luminescence quantum yield.
Abstract: Colloidal CsPbBr3 perovskite nanocrystals (NCs) have emerged as an excellent light emitting material in last one year. Using time domain and time-resolved THz spectroscopy and density functional theory based calculations, we establish 3-fold free carrier recombination mechanism, namely, nonradiative Auger, bimolecular electron–hole recombination, and inefficient trap-assisted recombination in 11 nm sized colloidal CsPbBr3 NCs. Our results confirm a negligible influence of surface defects in trapping charge carriers, which in turn results into desirable intrinsic transport properties, from the perspective of device applications, such as remarkably high carrier mobility (∼4500 cm2 V–1 s–1), large diffusion length (>9.2 μm), and high luminescence quantum yield (80%). Despite being solution processed and possessing a large surface to volume ratio, this combination of high carrier mobility and diffusion length, along with nearly ideal photoluminescence quantum yield, is unique compared to any other colloidal q...

452 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the recent progress in the research of these colloidal metal halide nanocrystals that are either analogous to CsPbX3 perovskites or derivatives of CspbX 3 perovsites.
Abstract: Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) are being explored extensively as an interesting variety of defect-tolerant materials, wherein high efficiencies of optical and optoelectronic processes can be achieved even in the presence of surface defects. This defect-tolerant nature arises mainly because of the unique electronic band structure of these perovskites. Consequently, synthesis and exploration of other metal halide {CsSnX3, Cs2SnX6, and (CH3)3Bi2X9} NCs with electronic band structure similar to that of CsPbX3 perovskite have begun with high promise. Another initiative to tailor the properties is the doping of metal ions (Mn2+, Zn2+, Cd2+, Sn2+, and Bi3+) into the lattice of CsPbX3 NCs. Furthermore, nanocomposites of CsPbX3–metal and CsPbX3–dielectric layer–metal have been attempted. Here we discuss the recent progress in the research of these colloidal metal halide NCs that are either analogous to CsPbX3 perovskites or derivatives of CsPbX3 perovskites.

248 citations


Cited by
More filters
01 Jan 2016
TL;DR: The principles of fluorescence spectroscopy is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading principles of fluorescence spectroscopy. As you may know, people have look hundreds times for their favorite novels like this principles of fluorescence spectroscopy, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they cope with some harmful bugs inside their desktop computer. principles of fluorescence spectroscopy is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the principles of fluorescence spectroscopy is universally compatible with any devices to read.

2,960 citations

Journal ArticleDOI
07 Oct 2016-Science
TL;DR: N nanoscale phase stabilization of CsPbI3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices and describe the formation of α-CsP bI3 QD films that are phase-stable for months in ambient air.
Abstract: We show nanoscale phase stabilization of CsPbI 3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI 3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI 3 (α-CsPbI 3 )—the variant with desirable band gap—is only stable at high temperatures. We describe the formation of α-CsPbI 3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuit voltage of 1.23 volts and efficiency of 10.77%. These devices also function as light-emitting diodes with low turn-on voltage and tunable emission.

2,103 citations

Journal ArticleDOI
TL;DR: The fundamentals, recent research progress, present status, and views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices are described.
Abstract: The photovoltaics of organic–inorganic lead halide perovskite materials have shown rapid improvements in solar cell performance, surpassing the top efficiency of semiconductor compounds such as CdTe and CIGS (copper indium gallium selenide) used in solar cells in just about a decade. Perovskite preparation via simple and inexpensive solution processes demonstrates the immense potential of this thin-film solar cell technology to become a low-cost alternative to the presently commercially available photovoltaic technologies. Significant developments in almost all aspects of perovskite solar cells and discoveries of some fascinating properties of such hybrid perovskites have been made recently. This Review describes the fundamentals, recent research progress, present status, and our views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices. Strategies and challenges regardi...

1,720 citations

Journal ArticleDOI
10 Nov 2017-Science
TL;DR: The prospects of LHP NCs for optoelectronic applications such as in television displays, light-emitting devices, and solar cells are surveyed, emphasizing the practical hurdles that remain to be overcome.
Abstract: Semiconducting lead halide perovskites (LHPs) have not only become prominent thin-film absorber materials in photovoltaics but have also proven to be disruptive in the field of colloidal semiconductor nanocrystals (NCs). The most important feature of LHP NCs is their so-called defect-tolerance—the apparently benign nature of structural defects, highly abundant in these compounds, with respect to optical and electronic properties. Here, we review the important differences that exist in the chemistry and physics of LHP NCs as compared with more conventional, tetrahedrally bonded, elemental, and binary semiconductor NCs (such as silicon, germanium, cadmium selenide, gallium arsenide, and indium phosphide). We survey the prospects of LHP NCs for optoelectronic applications such as in television displays, light-emitting devices, and solar cells, emphasizing the practical hurdles that remain to be overcome.

1,595 citations

Journal ArticleDOI
TL;DR: Lead-halide perovskites have entered the family of colloidal nanocrystals, showing excellent optical properties and easy synthesizability, and insight is provided into their chemical versatility, stability challenges and use in optoelectronics.
Abstract: Lead halide perovskites (LHPs) in the form of nanometre-sized colloidal crystals, or nanocrystals (NCs), have attracted the attention of diverse materials scientists due to their unique optical versatility, high photoluminescence quantum yields and facile synthesis. LHP NCs have a 'soft' and predominantly ionic lattice, and their optical and electronic properties are highly tolerant to structural defects and surface states. Therefore, they cannot be approached with the same experimental mindset and theoretical framework as conventional semiconductor NCs. In this Review, we discuss LHP NCs historical and current research pursuits, challenges in applications, and the related present and future mitigation strategies explored.

1,430 citations