scispace - formally typeset
Search or ask a question
Author

Abraham D. Stroock

Other affiliations: Harvard University, Ithaca College
Bio: Abraham D. Stroock is an academic researcher from Cornell University. The author has contributed to research in topics: Reynolds number & Laminar flow. The author has an hindex of 44, co-authored 132 publications receiving 15244 citations. Previous affiliations of Abraham D. Stroock include Harvard University & Ithaca College.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of flows in microdevices with focus on electrokinetics, mixing and dispersion, and multiphase flows is provided, highlighting topics important for the description of the fluid dynamics: driving forces, geometry, and the chemical characteristics of surfaces.
Abstract: Microfluidic devices for manipulating fluids are widespread and finding uses in many scientific and industrial contexts. Their design often requires unusual geometries and the interplay of multiple physical effects such as pressure gradients, electrokinetics, and capillarity. These circumstances lead to interesting variants of well-studied fluid dynamical problems and some new fluid responses. We provide an overview of flows in microdevices with focus on electrokinetics, mixing and dispersion, and multiphase flows. We highlight topics important for the description of the fluid dynamics: driving forces, geometry, and the chemical characteristics of surfaces.

3,307 citations

Journal ArticleDOI
25 Jan 2002-Science
TL;DR: This work presents a passive method for mixing streams of steady pressure-driven flows in microchannels at low Reynolds number, and uses bas-relief structures on the floor of the channel that are easily fabricated with commonly used methods of planar lithography.
Abstract: It is difficult to mix solutions in microchannels. Under typical operating conditions, flows in these channels are laminar—the spontaneous fluctuations of velocity that tend to homogenize fluids in turbulent flows are absent, and molecular diffusion across the channels is slow. We present a passive method for mixing streams of steady pressure-driven flows in microchannels at low Reynolds number. Using this method, the length of the channel required for mixing grows only logarithmically with the Pe «clet number, and hydrodynamic dispersion along the channel is reduced relative to that in a simple, smooth channel. This method uses bas-relief structures on the floor of the channel that are easily fabricated with commonly used methods of planar lithography.

3,269 citations

Journal ArticleDOI
TL;DR: The lithographic technique used to form endothelialized microfluidic vessels within a native collagen matrix is described and the morphology, mass transfer processes, and long-term stability of the endothelium are characterized.
Abstract: Microvascular networks support metabolic activity and define microenvironmental conditions within tissues in health and pathology. Recapitulation of functional microvascular structures in vitro could provide a platform for the study of complex vascular phenomena, including angiogenesis and thrombosis. We have engineered living microvascular networks in three-dimensional tissue scaffolds and demonstrated their biofunctionality in vitro. We describe the lithographic technique used to form endothelialized microfluidic vessels within a native collagen matrix; we characterize the morphology, mass transfer processes, and long-term stability of the endothelium; we elucidate the angiogenic activities of the endothelia and differential interactions with perivascular cells seeded in the collagen bulk; and we demonstrate the nonthrombotic nature of the vascular endothelium and its transition to a prothrombotic state during an inflammatory response. The success of these microvascular networks in recapitulating these phenomena points to the broad potential of this platform for the study of cardiovascular biology and pathophysiology.

764 citations

Journal ArticleDOI
TL;DR: This review describes the design and fabrication of microfluidic systems in poly(dimethylsiloxane), a soft polymer with attractive physical and chemical properties: elasticity, optical transparency, flexible surface chemistry, low permeability to water, and low electrical conductivity.
Abstract: This review describes the design and fabrication of microfluidic systems in poly(dimethylsiloxane) (PDMS). PDMS is a soft polymer with attractive physical and chemical properties: elasticity, optical transparency, flexible surface chemistry, low permeability to water, and low electrical conductivity. Soft lithography makes fabrication of microfluidic systems in PDMS particularly easy. Integration of components, and interfacing of devices with the user, is also convenient and simpler in PDMS than in systems made in hard materials. Fabrication of both single and multilayer microfluidic systems is straightforward in PDMS. Several components are described in detail: a passive chaotic mixer, pneumatically actuated switches and valves, a magnetic filter, functional membranes, and optical components.

702 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new fabrication challenges and finding new applications in biology, chemistry, and materials science for handling nanoliter quantities of fluids, which is a new fabrication challenge.
Abstract: Devices for handling nanoliter quantities of fluids are creating new fabrication challenges and finding new applications in biology, chemistry, and materials science.

646 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
27 Jul 2006-Nature
TL;DR: The manipulation of fluids in channels with dimensions of tens of micrometres — microfluidics — has emerged as a distinct new field that has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology.
Abstract: The manipulation of fluids in channels with dimensions of tens of micrometres--microfluidics--has emerged as a distinct new field. Microfluidics has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology. But the field is still at an early stage of development. Even as the basic science and technological demonstrations develop, other problems must be addressed: choosing and focusing on initial applications, and developing strategies to complete the cycle of development, including commercialization. The solutions to these problems will require imagination and ingenuity.

8,260 citations

Journal ArticleDOI
29 Mar 2002-Science
TL;DR: Self-assembling processes are common throughout nature and technology and involve components from the molecular to the planetary scale and many different kinds of interactions.
Abstract: Self-assembly is the autonomous organization of components into patterns or structures without human intervention. Self-assembling processes are common throughout nature and technology. They involve components from the molecular (crystals) to the planetary (weather systems) scale and many different kinds of interactions. The concept of self-assembly is used increasingly in many disciplines, with a different flavor and emphasis in each.

6,491 citations