scispace - formally typeset
Search or ask a question
Author

Achyut K. Panda

Bio: Achyut K. Panda is an academic researcher from Veer Surendra Sai University of Technology. The author has contributed to research in topics: Pyrolysis & Diesel fuel. The author has an hindex of 15, co-authored 39 publications receiving 1603 citations. Previous affiliations of Achyut K. Panda include Centurion University of Technology and Management & National Institute of Technology, Rourkela.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the available literature in this field of active research and identifies the gaps that need further attention can be found in this article, where a number of pilot, demonstration and commercial plants processing various types of plastic wastes in Germany, Japan, USA, India, and elsewhere.
Abstract: The present rate of economic growth is unsustainable without saving of fossil energy like crude oil, natural gas or coal. Thus mankind has to rely on the alternate/renewable energy sources like biomass, hydropower, geothermal energy, wind energy, solar energy, nuclear energy, etc. On the other hand, suitable waste management strategy is another important aspect of sustainable development. The growth of welfare levels in modern society during the past decades has brought about a huge increase in the production of all kinds of commodities, which indirectly generate waste. Plastics have been one of the materials with the fastest growth because of their wide range of applications due to versatility and relatively low cost. Since the duration of life of plastic products is relatively small, there is a vast plastics waste stream that reaches each year to the final recipients creating a serious environmental problem. Again, because disposal of post consumer plastics is increasingly being constrained by legislation and escalating costs, there is considerable demand for alternatives to disposal or land filling. Advanced research in the field of green chemistry could yield biodegradable/green polymers but is too limited at this point of time to substitute the non-biodegradable plastics in different applications. Once standards are developed for degradable plastics they can be used to evaluate the specific formulations of materials which will find best application in this state as regards their performance and use characteristics. Among the alternatives available are source reduction, reuse, recycling, and recovery of the inherent energy value through waste-to-energy incineration and processed fuel applications. Production of liquid fuel would be a better alternative as the calorific value of the plastics is comparable to that of fuels, around 40 MJ/kg. Each of these options potentially reduces waste and conserves natural resources. Plastics recycling, continues to progress with a wide range of old and new technologies. Many research projects have been undertaken on chemical recycling of waste plastics to fuel and monomer. This is also reflected by a number of pilot, demonstration, and commercial plants processing various types of plastic wastes in Germany, Japan, USA, India, and elsewhere. Further investigations are required to enhance the generation of value added products (fuel) with low investments without affecting the environment. The paper reviews the available literature in this field of active research and identifies the gaps that need further attention.

688 citations

Journal ArticleDOI
TL;DR: In this article, the physicico-chemical characteristics of acid-leached kaolinite clay were studied by XRF, XRD, FTIR, TGA, DTA, SEM and N 2 adsorption techniques.

336 citations

Journal ArticleDOI
Abstract: Plastics have become an indispensable ingredient of human life. They are non-biodegradable polymers of mostly containing carbon, hydrogen, and few other elements such as chlorine, nitrogen etc. Rapid growth of the world population led to increased demand of commodity plastics. High density poly ethylene is one of the largest used commodity plastics due to its vast applications in many fields. Due to its non bio degradability and low life, HDPE contributes significantly to the problem of Municipal Waste Management. To avert environment pollution of HDPE wastes, they must be recycled and recovered. On the other hand, steady depletion of fossil fuel and increased energy demand, motivated the researchers and technologists to search and develop different energy sources. Waste to energy has been a significant way to utilize the waste sustainably, simultaneously add to meet the energy demand. Plastics being petrochemical origin have inherently high calorific value. Thus they can be converted back to useful energy. Many researches have been carried out to convert the waste plastics into liquid fuel by thermal and catalytic pyrolysis and this has led to establishment of a number of successful firms converting waste plastics to liquid fuels. This paper reviews the production and consumption HDPE, different methods of recycling of plastic with special reference to chemical degradation of HDPE to fuel. This also focuses on different factors that affect these degradations, the kinetics and mechanism of this reaction.

318 citations

Journal ArticleDOI
TL;DR: In this article, the performance and emission of a single cylinder DI four stroke diesel engine using waste plastic oil (WPO) derived from pyrolysis of waste plastics using Zeolite-A as catalyst.
Abstract: Depletion of fossil fuels and stringent emission norms focus attention to discover an evitable source of alternative fuel in order to attribute a significant compensation on conventional fuels. Besides, waste management policies encourage the valorization of different wastes for the production of alternative fuels in order to reduce the challenges of waste management. In this context, pyrolysis has become an emerging trend to convert different wastes into alternate fuel and suitable to be used as a substitute fuel for CI engines. The current investigation provides a sustainable and feasible solution for waste plastic management by widening the gap between global plastic production and plastic waste generation. It investigates the performance and emission of a single cylinder DI four stroke diesel engine using waste plastic oil (WPO) derived from pyrolysis of waste plastics using Zeolite-A as catalyst. Engine load tests have been conducted taking waste plastic oil and subsequently a blend of waste plastic oil by 10%, 20%, and 30% in volume proportions with diesel as fuel. The performance of the test engine in terms of brake thermal efficiency is found marginally higher and brake specific fuel consumption comparatively lowest for 20% WPO-diesel blend than pure diesel. The NOx and HC emission is found lower under low load condition and became higher by increasing the load as compared to diesel. Fuel exergy was significantly increasing after blending of WPO with pure diesel, but exergetic efficiency of the blended fuels followed the reverse trend. However, increase in load of the engine improved the exergetic efficiency. The 20% WPO–diesel blended fuel is found suitable to be used as an alternative fuel for diesel engine.

87 citations

Journal ArticleDOI
TL;DR: In this article, polypropylene was cracked thermally and catalytically in the presence of kaoline and silica alumina in a semi-batch reactor in the temperature range 400-550°C in order to obtain suitable liquid fuels.

80 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a framework of strategies to guide designers and business strategists in the move from a linear to a circular economy is developed, where the terminology of slowing, closing, and narrowing resource loops is introduced.
Abstract: The transition within business from a linear to a circular economy brings with it a range of practical challenges for companies. The following question is addressed: What are the product design and business model strategies for companies that want to move to a circular economy model? This paper develops a framework of strategies to guide designers and business strategists in the move from a linear to a circular economy. Building on Stahel, the terminology of slowing, closing, and narrowing resource loops is introduced. A list of product design strategies, business model strategies, and examples for key decision-makers in businesses is introduced, to facilitate the move to a circular economy. This framework also opens up a future research agenda for the circular economy.

1,702 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive description of the current pathways for recycling of polymers, via both mechanical and chemical recycling, and discusses the main challenges and some potential remedies to these recycling strategies, thus providing an academic angle as well as an applied one.

1,352 citations

Journal ArticleDOI
TL;DR: This study studied the survival and fitness of the earthworm Lumbricus terrestris exposed to microplastics in litter at concentrations of 7, 28, 45, and 60% dry weight, percentages that, after bioturbation, translate to 0.2 to 1.2% in bulk soil.
Abstract: Plastic debris is widespread in the environment, but information on the effects of microplastics on terrestrial fauna is completely lacking. Here, we studied the survival and fitness of the earthworm Lumbricus terrestris (Oligochaeta, Lumbricidae) exposed to microplastics (Polyethylene, <150 μm) in litter at concentrations of 7, 28, 45, and 60% dry weight, percentages that, after bioturbation, translate to 0.2 to 1.2% in bulk soil. Mortality after 60 days was higher at 28, 45, and 60% of microplastics in the litter than at 7% w/w and in the control (0%). Growth rate was significantly reduced at 28, 45, and 60% w/w microplastics, compared to the 7% and control treatments. Due to the digestion of ingested organic matter, microplastic was concentrated in cast, especially at the lowest dose (i.e., 7% in litter) because that dose had the highest proportion of digestible organic matter. Whereas 50 percent of the microplastics had a size of <50 μm in the original litter, 90 percent of the microplastics in the casts was <50 μm in all treatments, which suggests size-selective egestion by the earthworms. These concentration-transport and size-selection mechanisms may have important implications for fate and risk of microplastic in terrestrial ecosystems.

754 citations

Journal ArticleDOI
TL;DR: In this paper, the effect on properties of virgin and recycled HDPE/LDPE/Nylon PSW with different reinforcements like sand, natural fibre, hemp fibre, metal powder etc.
Abstract: Plastic solid waste (PSW) of polymers (like: high density polyethylene (HDPE), low density polyethylene (LDPE), Nylon etc.) is creating new challenges, which in today's scenario are major research concerns. A sharp rise has been observed in production of different products based on different plastic material. This huge increase in plastic commodities also increases the waste generation thus creating new challenges. Some researchers have reported work in the field of PSW management with different recycling methods. This paper compiles the different research work done by researchers in this field of recycling and progress in recovery and management of PSW by different methods (i.e. Primary, secondary, tertiary and quaternary) along with the various identification/separation techniques. Further, this paper reviews the effect on properties of virgin and recycled HDPE/LDPE/Nylon PSW with different reinforcements like sand, natural fibre, hemp fibre, metal powder etc.

703 citations

Journal ArticleDOI
TL;DR: The existing techniques of pyrolysis, the parameters which affect the products yield and selectivity and the influence of different catalysts on the process are presented and major research gaps in this technology are identified.

687 citations