scispace - formally typeset
Search or ask a question
Author

Adam Auton

Other affiliations: Broad Institute, Cornell University, University of Oxford  ...read more
Bio: Adam Auton is an academic researcher from Albert Einstein College of Medicine. The author has contributed to research in topics: Genome-wide association study & Population. The author has an hindex of 47, co-authored 94 publications receiving 51799 citations. Previous affiliations of Adam Auton include Broad Institute & Cornell University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is confirmed that aging is associated with the accumulation of somatic mutations, and strongly suggest that the level of genome instability of normal cells, modified by both endogenous and environmental factors, is the main risk factor for cancer.
Abstract: Aging is associated with an increased risk of cancer, possibly in part because of an age-related increase in mutations in normal tissues. Due to their extremely low abundance, somatic mutations in normal tissues frequently escape detection. Tumors, as clonal expansions of single cells, can provide information about the somatic mutations present in these cells prior to tumorigenesis. Here, we used data from The Cancer Genome Atlas (TCGA), to systematically study the frequency and spectrum of somatic mutations in a total of 6,969 patients and 34 different tumor types as a function of the age of the patient. After using linear modeling to control for the age structure of different tumor types, we found that the number of identified somatic mutations increases exponentially with age. Using additional data from the literature, we found that accumulation of somatic mutations is associated with cell division rate, cancer risk and cigarette smoking, with the latter also associated with a distinct spectrum of mutations. Our results confirm that aging is associated with the accumulation of somatic mutations, and strongly suggest that the level of genome instability of normal cells, modified by both endogenous and environmental factors, is the main risk factor for cancer.

96 citations

Journal ArticleDOI
TL;DR: A multi-generational estimate from the autozygous segment in a non-European population that gives insight into the contribution of post-zygotic mutations and population-specific mutational processes is presented.
Abstract: Heterozygous mutations within homozygous sequences descended from a recent common ancestor offer a way to ascertain de novo mutations across multiple generations. Using exome sequences from 3222 British-Pakistani individuals with high parental relatedness, we estimate a mutation rate of 1.45 ± 0.05 × 10−8 per base pair per generation in autosomal coding sequence, with a corresponding non-crossover gene conversion rate of 8.75 ± 0.05 × 10−6 per base pair per generation. This is at the lower end of exome mutation rates previously estimated in parent–offspring trios, suggesting that post-zygotic mutations contribute little to the human germ-line mutation rate. We find frequent recurrence of mutations at polymorphic CpG sites, and an increase in C to T mutations in a 5ʹ CCG 3ʹ to 5ʹ CTG 3ʹ context in the Pakistani population compared to Europeans, suggesting that mutational processes have evolved rapidly between human populations. Estimates of human mutation rates differ substantially based on the approach. Here, the authors present a multi-generational estimate from the autozygous segment in a non-European population that gives insight into the contribution of post-zygotic mutations and population-specific mutational processes.

92 citations

Journal ArticleDOI
TL;DR: The limited genetic diversity of dog breeds facilitates identification of genes, functional variants and regulatory pathways underlying complex psychiatric disorders that are mechanistically similar in dogs and humans.
Abstract: Background: Obsessive-compulsive disorder (OCD), a severe mental disease manifested in time-consuming repetition of behaviors, affects 1 to 3% of the human population. While highly heritable, complex genetics has hampered attempts to elucidate OCD etiology. Dogs suffer from naturally occurring compulsive disorders that closely model human OCD, manifested as an excessive repetition of normal canine behaviors that only partially responds to drug therapy. The limited diversity within dog breeds makes identifying underlying genetic factors easier. Results: We use genome-wide association of 87 Doberman Pinscher cases and 63 controls to identify genomic loci associated with OCD and sequence these regions in 8 affected dogs from high-risk breeds and 8 breed-matched controls. We find 119 variants in evolutionarily conserved sites that are specific to dogs with OCD. These case-only variants are significantly more common in high OCD risk breeds compared to breeds with no known psychiatric problems. Four genes, all with synaptic function, have the most case-only variation: neuronal cadherin (CDH2), catenin alpha2 (CTNNA2), ataxin-1 (ATXN1), and plasma glutamate carboxypeptidase (PGCP). In the 2 Mb gene desert between the cadherin genes CDH2 and DSC3, we find two different variants found only in dogs with OCD that disrupt the same highly conserved regulatory element. These variants cause significant changes in gene expression in a human neuroblastoma cell line, likely due to disrupted transcription factor binding. Conclusions: The limited genetic diversity of dog breeds facilitates identification of genes, functional variants and regulatory pathways underlying complex psychiatric disorders that are mechanistically similar in dogs and humans.

91 citations

Posted ContentDOI
Richard Karlsson Linnér1, Richard Karlsson Linnér2, Pietro Biroli3, Edward Kong4, S. Fleur W. Meddens1, S. Fleur W. Meddens2, Robbee Wedow5, Mark Alan Fontana6, Mark Alan Fontana7, Maël Lebreton8, Abdel Abdellaoui2, Anke R. Hammerschlag2, Michel G. Nivard2, Aysu Okbay2, Cornelius A. Rietveld1, Pascal Timshel9, Pascal Timshel10, Stephen P. Tino11, Maciej Trzaskowski12, Ronald de Vlaming2, Ronald de Vlaming1, Christian L. Zund3, Yanchun Bao13, Laura Buzdugan3, Ann H. Caplin, Chia-Yen Chen4, Chia-Yen Chen14, Peter Eibich15, Peter Eibich16, Peter Eibich17, Pierre Fontanillas, Juan R. González18, Peter K. Joshi19, Ville Karhunen20, Aaron Kleinman, Remy Z. Levin21, Christina M. Lill22, Gerardus A. Meddens, Gerard Muntané18, Sandra Sanchez-Roige21, Frank J. A. van Rooij1, Erdogan Taskesen2, Yang Wu12, Futao Zhang12, Adam Auton, Jason D. Boardman5, David W. Clark19, Andrew Conlin20, Conor C. Dolan2, Urs Fischbacher23, Patrick J. F. Groenen1, Kathleen Mullan Harris24, Gregor Hasler25, Albert Hofman1, Albert Hofman4, Mohammad Arfan Ikram1, Sonia Jain21, Robert Karlsson26, Ronald C. Kessler4, Maarten Kooyman, James MacKillop27, Minna Männikkö20, Carlos Morcillo-Suarez18, Matthew B. McQueen5, Klaus M. Schmidt28, Melissa C. Smart13, Matthias Sutter16, Matthias Sutter29, Roy Thurik1, André G. Uitterlinden1, Jon White30, Harriet de Wit31, Jian Yang12, Lars Bertram22, Lars Bertram32, Dorret I. Boomsma2, Tõnu Esko33, Ernst Fehr3, David A. Hinds, Magnus Johannesson34, Meena Kumari13, David Laibson4, Patrik K. E. Magnusson26, Michelle N. Meyer35, Arcadi Navarro18, Arcadi Navarro36, Abraham A. Palmer21, Tune H. Pers10, Tune H. Pers9, Danielle Posthuma2, Daniel Schunk37, Murray B. Stein21, Rauli Svento20, Henning Tiemeier1, Paul R. H. J. Timmers19, Patrick Turley6, Patrick Turley4, Patrick Turley14, Robert J. Ursano38, Gert G. Wagner16, Gert G. Wagner17, James F. Wilson39, James F. Wilson19, Jacob Gratten12, James J. Lee40, David Cesarini41, Daniel J. Benjamin6, Daniel J. Benjamin42, Daniel J. Benjamin7, Philipp Koellinger2, Philipp Koellinger17, Jonathan P. Beauchamp11 
08 Jan 2019-bioRxiv
TL;DR: Bioinformatics analyses imply that genes near general-risk-tolerance-associated SNPs are highly expressed in brain tissues and point to a role for glutamatergic and GABAergic neurotransmission.
Abstract: Humans vary substantially in their willingness to take risks. In a combined sample of over one million individuals, we conducted genome-wide association studies (GWAS) of general risk tolerance, adventurousness, and risky behaviors in the driving, drinking, smoking, and sexual domains. We identified 611 approximately independent genetic loci associated with at least one of our phenotypes, including 124 with general risk tolerance. We report evidence of substantial shared genetic influences across general risk tolerance and risky behaviors: 72 of the 124 general risk tolerance loci contain a lead SNP for at least one of our other GWAS, and general risk tolerance is moderately to strongly genetically correlated ( to 0.50) with a range of risky behaviors. Bioinformatics analyses imply that genes near general-risk-tolerance-associated SNPs are highly expressed in brain tissues and point to a role for glutamatergic and GABAergic neurotransmission. We find no evidence of enrichment for genes previously hypothesized to relate to risk tolerance.

85 citations

Journal ArticleDOI
TL;DR: It is estimated that uniparental disomy, the inheritance of both homologs of a chromosome from one parent with no representative copy from the other, is twice as common as previously thought and a machine-learning framework to detect UPD using ROH is presented.
Abstract: Meiotic nondisjunction and resulting aneuploidy can lead to severe health consequences in humans. Aneuploidy rescue can restore euploidy but may result in uniparental disomy (UPD), the inheritance of both homologs of a chromosome from one parent with no representative copy from the other. Current understanding of UPD is limited to ∼3,300 case subjects for which UPD was associated with clinical presentation due to imprinting disorders or recessive diseases. Thus, the prevalence of UPD and its phenotypic consequences in the general population are unknown. We searched for instances of UPD across 4,400,363 consented research participants from the personal genetics company 23andMe, Inc., and 431,094 UK Biobank participants. Using computationally detected DNA segments identical-by-descent (IBD) and runs of homozygosity (ROH), we identified 675 instances of UPD across both databases. We estimate that UPD is twice as common as previously thought, and we present a machine-learning framework to detect UPD using ROH. While we find a nominally significant association between UPD of chromosome 22 and autism risk, we do not find significant associations between UPD and deleterious traits in the 23andMe database.

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

37,898 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an approach for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

10,798 citations

Journal ArticleDOI
TL;DR: VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API.
Abstract: Summary: The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. Availability: http://vcftools.sourceforge.net Contact: [email protected]

10,164 citations