scispace - formally typeset
Search or ask a question
Author

Adam H. Sobel

Bio: Adam H. Sobel is an academic researcher from Lamont–Doherty Earth Observatory. The author has contributed to research in topics: Tropical cyclone & Sea surface temperature. The author has an hindex of 65, co-authored 225 publications receiving 15030 citations. Previous affiliations of Adam H. Sobel include Lawrence Berkeley National Laboratory & Central Michigan University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a theoretical basis for maximum TC intensity appears now to be well established, but a climate theory of TC formation remains elusive Climate models mostly continue to predict future decreases in global TC numbers, projected increases in the intensities of the strongest storms and increased rainfall rates Sea level rise will likely contribute toward increased storm surge risk.
Abstract: Recent research has strengthened the understanding of the links between climate and tropical cyclones (TCs) on various timescales Geological records of past climates have shown century-long variations in TC numbers While no significant trends have been identified in the Atlantic since the late 19th century, significant observed trends in TC numbers and intensities have occurred in this basin over the past few decades, and trends in other basins are increasingly being identified However, understanding of the causes of these trends is incomplete, and confidence in these trends continues to be hampered by a lack of consistent observations in some basins A theoretical basis for maximum TC intensity appears now to be well established, but a climate theory of TC formation remains elusive Climate models mostly continue to predict future decreases in global TC numbers, projected increases in the intensities of the strongest storms and increased rainfall rates Sea level rise will likely contribute toward increased storm surge risk Against the background of global climate change and sea level rise, it is important to carry out quantitative assessments on the potential risk of TC-induced storm surge and flooding to densely populated cities and river deltas Several climate models are now able to generate a good distribution of both TC numbers and intensities in the current climate Inconsistent TC projection results emerge from modeling studies due to different downscaling methodologies and warming scenarios, inconsistencies in projected changes of large-scale conditions, and differences in model physics and tracking algorithms WIREs Clim Change 2016, 7:65–89 doi: 101002/wcc371 For further resources related to this article, please visit the WIREs website

1,496 citations

Journal ArticleDOI
TL;DR: This paper examined how different environmental factors contribute to this influence, using a genesis potential index developed by Emanuel and Nolan, using monthly NCEP Reanalysis data in the period of 1950-2005, calculated on a latitude strip from 60°S to 60°N.
Abstract: ENSO (El Nino–Southern Oscillation) has a large influence on tropical cyclone activity. The authors examine how different environmental factors contribute to this influence, using a genesis potential index developed by Emanuel and Nolan. Four factors contribute to the genesis potential index: low-level vorticity (850 hPa), relative humidity at 600 hPa, the magnitude of vertical wind shear from 850 to 200 hPa, and potential intensity (PI). Using monthly NCEP Reanalysis data in the period of 1950–2005, the genesis potential index is calculated on a latitude strip from 60°S to 60°N. Composite anomalies of the genesis potential index are produced for El Nino and La Nina years separately. These composites qualitatively replicate the observed interannual variations of the observed frequency and location of genesis in several different basins. This justifies producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology, to determine which among the factors are most important in causing interannual variations in genesis frequency. Specific factors that have more influence than others in different regions can be identified. For example, in El Nino years, relative humidity and vertical shear are important for the reduction in genesis seen in the Atlantic basin, and relative humidity and vorticity are important for the eastward shift in the mean genesis location in the western North Pacific.

686 citations

Journal ArticleDOI
TL;DR: In this paper, four central research questions -now tractable through advances in models, concepts and observations -were proposed to accelerate future progress in understanding the interactions between clouds, circulation and climate.
Abstract: Our understanding of the interactions between clouds, circulation and climate is limited. Four central research questions — now tractable through advances in models, concepts and observations — are proposed to accelerate future progress.

655 citations

Journal ArticleDOI
TL;DR: The influence of the El Nino-Southern Oscillation (ENSO) on tropical cyclone intensity in the western North Pacific basin is examined in this article, where ACE is positively correlated with ENSO indices.
Abstract: The influence of the El Nino–Southern Oscillation (ENSO) on tropical cyclone intensity in the western North Pacific basin is examined. Accumulated cyclone energy (ACE), constructed from the best-track dataset for the region for the period 1950–2002, and other related variables are analyzed. ACE is positively correlated with ENSO indices. This and other statistics of the interannually varying tropical cyclone distribution are used to show that there is a tendency in El Nino years toward tropical cyclones that are both more intense and longer-lived than in La Nina years. ACE leads ENSO indices: during the peak season (northern summer and fall), ACE is correlated approximately as strongly with ENSO indices up to six months later (northern winter), as well as simultaneously. It appears that not all of this lead–lag relationship is easily explained by the autocorrelation of the ENSO indices, though much of it is. Interannual variations in the annual mean lifetime, intensity, and number of tropical cyclones all contribute to the ENSO signal in ACE, though the lifetime effect appears to be the most important of the three.

621 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived the basic fluid-dynamical scaling under the weak temperature gradient (WTG) approximation in a shallow water system with a fixed mass source representing an externally imposed heating.
Abstract: Horizontal temperature gradients are small in the tropical atmosphere, as a consequence of the smallness of the Coriolis parameter near the equator. This provides a strong constraint on both large-scale fluid dynamics and diabatic processes. This work is a step toward the construction of a balanced dynamical theory for the tropical circulation that is based on this constraint, and in which the diabatic processes are explicit and interactive. The authors first derive the basic fluid-dynamical scaling under the weak temperature gradient (WTG) approximation in a shallow water system with a fixed mass source representing an externally imposed heating. This derivation follows an earlier similar one by Held and Hoskins, but extends the analysis to the nonlinear case (though on an f plane), examines the resulting system in more detail, and presents a solution for an axisymmetric ‘‘top-hat’’ forcing. The system is truly balanced, having no gravity waves, but is different from other balance models in that the heating is included a priori in the scaling. The WTG scaling is then applied to a linear moist model in which the convective heating is controlled by a moisture variable that is advected by the flow. This moist model is derived from the Quasi-equilibrium Tropical Circulation Model (QTCM) equations of Neelin and Zeng but can be viewed as somewhat more general. A number of additional approximations are made in order to consider balanced dynamical modes, apparently not studied previously, which owe their existence to interactions of the moisture and flow fields. A particularly interesting mode arises on an f plane with a constant background moisture gradient. In the limit of low frequency and zero meridional wavenumber this mode has a dispersion relation mathematically identical to that of a barotropic Rossby wave, though the phase speed is eastward (for moisture decreasing poleward in the background state) and the propagation mechanism is quite different. This mode also has significant positive growth rate for low wavenumbers. The addition of the b effect complicates matters. For typical parameters, when b is included the direction of phase propagation is ambiguous, and the growth rate reduced, as the effects of the background gradients in moisture and planetary vorticity appear to cancel to a large degree. Possible relevance to intraseasonal variability and easterly wave dynamics is briefly discussed.

584 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21-CMIP6-Endorsed MIPs.
Abstract: . By coordinating the design and distribution of global climate model simulations of the past, current, and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP historical simulations (1850–near present) that will maintain continuity and help document basic characteristics of models across different phases of CMIP; (2) common standards, coordination, infrastructure, and documentation that will facilitate the distribution of model outputs and the characterization of the model ensemble; and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects (MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and CMIP historical simulations to address a large range of specific questions and fill the scientific gaps of the previous CMIP phases. The DECK and CMIP historical simulations, together with the use of CMIP data standards, will be the entry cards for models participating in CMIP. Participation in CMIP6-Endorsed MIPs by individual modelling groups will be at their own discretion and will depend on their scientific interests and priorities. With the Grand Science Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three broad questions: – How does the Earth system respond to forcing? – What are the origins and consequences of systematic model biases? – How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? This CMIP6 overview paper presents the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21 CMIP6-Endorsed MIPs.

4,192 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
04 Aug 2005-Nature
TL;DR: An index of the potential destructiveness of hurricanes based on the total dissipation of power, integrated over the lifetime of the cyclone, is defined and shows that this index has increased markedly since the mid-1970s, due to both longer storm lifetimes and greater storm intensities.
Abstract: Theory and modelling predict that hurricane intensity should increase with increasing global mean temperatures, but work on the detection of trends in hurricane activity has focused mostly on their frequency and shows no trend. Here I define an index of the potential destructiveness of hurricanes based on the total dissipation of power, integrated over the lifetime of the cyclone, and show that this index has increased markedly since the mid-1970s. This trend is due to both longer storm lifetimes and greater storm intensities. I find that the record of net hurricane power dissipation is highly correlated with tropical sea surface temperature, reflecting well-documented climate signals, including multi-decadal oscillations in the North Atlantic and North Pacific, and global warming. My results suggest that future warming may lead to an upward trend in tropical cyclone destructive potential, and--taking into account an increasing coastal population--a substantial increase in hurricane-related losses in the twenty-first century.

3,518 citations

Journal ArticleDOI
16 Sep 2005-Science
TL;DR: A large increase was seen in the number and proportion of hurricanes reaching categories 4 and 5 and the number of cyclones and cyclone days has decreased in all basins except the North Atlantic during the past decade.
Abstract: We examined the number of tropical cyclones and cyclone days as well as tropical cyclone intensity over the past 35 years, in an environment of increasing sea surface temperature. A large increase was seen in the number and proportion of hurricanes reaching categories 4 and 5. The largest increase occurred in the North Pacific, Indian, and Southwest Pacific Oceans, and the smallest percentage increase occurred in the North Atlantic Ocean. These increases have taken place while the number of cyclones and cyclone days has decreased in all basins except the North Atlantic during the past decade.

2,989 citations