scispace - formally typeset
Search or ask a question
Author

Adam Johnson

Bio: Adam Johnson is an academic researcher from Centers for Disease Control and Prevention. The author has contributed to research in topics: Neuraminidase & Virus. The author has an hindex of 2, co-authored 2 publications receiving 1016 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Using consensus degenerate RT-PCR, a novel influenza A virus is identified in a flat-faced fruit bat from Peru, indicating that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses.
Abstract: Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris) from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses.

1,124 citations

Journal ArticleDOI
20 Apr 2022-Science
TL;DR: There is an increase in the number of African countries able to sequence within their own borders, coupled with a decrease in sequencing turnaround time, which underscores the heterogeneous nature of the pandemic.
Abstract: Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern—particularly Alpha, Beta, Delta, and Omicron—on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century. Description Surveillance across Africa The past 2 years, during which waves of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants swept the globe, have starkly highlighted health disparities across nations. Tegally et al. show how the coordinated efforts of talented African scientists have in a short time made great contributions to pandemic surveillance and data gathering. Their efforts and initiatives have provided early warning that has likely benefited wealthier countries more than their own. Genomic surveillance identified the emergence of the highly transmissible Beta and Omicron variants and now the appearance of Omicron sublineages in Africa. However, it is imperative that technology transfer for diagnostics and vaccines, as well the logistic wherewithal to produce and deploy them, match the data-gathering effort. —CA Expanding SARS-CoV-2 sequencing capacity allowed monitoring of a fast-evolving pandemic across Africa. INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century. Expanse of SARS-CoV-2 sequencing capacity in Africa. (A) African countries (shaded in gray) and institutions (red circles) with on-site sequencing facilities that are capable of producing SARS-CoV-2 whole genomes locally. (B) The number of SARS-CoV-2 genomes produced per country and the proportion of those genomes that were produced locally, regionally within Africa, or abroad. (C) Decreased turnaround time of sequencing output in Africa to an almost real-time release of genomic data.

51 citations

Journal ArticleDOI
12 Nov 2014-Vaccine
TL;DR: The antigenic stability of viruses isolated and propagated in cell lines qualified for influenza vaccine manufacture were tested and results indicate that influenza viruses isolated in vaccine certified cell lines may well qualify for use in vaccine production.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Wild aquatic bird populations have long been considered the natural reservoir for influenza A viruses with virus transmission from these birds seeding other avian and mammalian hosts, but recent studies in bats have suggested other reservoir species may also exist.

4,155 citations

Journal Article
TL;DR: The highly automated PHENIX AutoBuild wizard is described, which can be applied equally well to phases derived from isomorphous/anomalous and molecular-replacement methods.
Abstract: Iterative model-building, structure refinement, and density modification with the PHENIX AutoBuild Wizard Thomas C. Terwilliger a* , Ralf W. Grosse-Kunstleve b , Pavel V. Afonine b , Nigel W. Moriarty b , Peter Zwart b , Li-Wei Hung a , Randy J. Read c , Paul D. Adams b* a b Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA Lawrence Berkeley National Laboratory, One Cyclotron Road, Bldg 64R0121, Berkeley, CA 94720, USA. c Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK. * Email: terwill@lanl.gov or PDAdams@lbl.gov Running title: The PHENIX AutoBuild Wizard Abstract The PHENIX AutoBuild Wizard is a highly automated tool for iterative model- building, structure refinement and density modification using RESOLVE or TEXTAL model- building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 A to 3.2 A, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution. Keywords: Model building; model completion; macromolecular models; Protein Data Bank; structure refinement; PHENIX Introduction Iterative model-building and refinement is a powerful approach to obtaining a complete and accurate macromolecular model. The approach consists of cycles of building an atomic model based on an electron density map for a macromolecular structure, refining the structure, using the refined structure as a basis for improving the map, and building a new model. This type of approach has been carried out in a semi-automated fashion for many years, with manual model-building iterating with automated refinement (Jensen, 1997). More recently, with the development first of ARP/wARP (Perrakis et al., 1999), and later other procedures including RESOLVE iterative model-building and refinement (Terwilliger,

1,161 citations

Journal ArticleDOI
TL;DR: Recent advances in understanding the molecular determinants of influenza virus immune escape, sources of evolutionary selection pressure, population dynamics of influenza viruses and prospects for better influenza virus control are discussed.
Abstract: Despite decades of surveillance and pharmaceutical and non-pharmaceutical interventions, seasonal influenza viruses continue to cause epidemics around the world each year. The key process underlying these recurrent epidemics is the evolution of the viruses to escape the immunity that is induced by prior infection or vaccination. Although we are beginning to understand the processes that underlie the evolutionary dynamics of seasonal influenza viruses, the timing and nature of emergence of new virus strains remain mostly unpredictable. In this Review, we discuss recent advances in understanding the molecular determinants of influenza virus immune escape, sources of evolutionary selection pressure, population dynamics of influenza viruses and prospects for better influenza virus control.

446 citations

Journal ArticleDOI
TL;DR: Recent data on the interaction between influenza virus HA and SA receptors of the host, and the impact on virus host range, pathogenesis, and transmission are reviewed and remaining challenges and future research priorities are discussed.
Abstract: The recent emergence of a novel avian A/H7N9 influenza virus in poultry and humans in China, as well as laboratory studies on adaptation and transmission of avian A/H5N1 influenza viruses, has shed new light on influenza virus adaptation to mammals. One of the biological traits required for animal influenza viruses to cross the species barrier that received considerable attention in animal model studies, in vitro assays, and structural analyses is receptor binding specificity. Sialylated glycans present on the apical surface of host cells can function as receptors for the influenza virus hemagglutinin (HA) protein. Avian and human influenza viruses typically have a different sialic acid (SA)-binding preference and only few amino acid changes in the HA protein can cause a switch from avian to human receptor specificity. Recent experiments using glycan arrays, virus histochemistry, animal models, and structural analyses of HA have added a wealth of knowledge on receptor binding specificity. Here, we review recent data on the interaction between influenza virus HA and SA receptors of the host, and the impact on virus host range, pathogenesis, and transmission. Remaining challenges and future research priorities are also discussed.

336 citations

Journal ArticleDOI
TL;DR: This review traces the epidemiology of both adamantane- and NAI-resistant IAV subtypes since the approval of these drugs and highlights the susceptibility status of currently circulating I AV subtypes to NAIs.
Abstract: Influenza A virus (IAV) is the sole cause of the unpredictable influenza pandemics and deadly zoonotic outbreaks and constitutes at least half of the cause of regular annual influenza epidemics in humans. Two classes of anti-IAV drugs, adamantanes and neuraminidase (NA) inhibitors (NAIs) targeting the viral components M2 ion channel and NA, respectively, have been approved to treat IAV infections. However, IAV rapidly acquired resistance against both classes of drugs by mutating these viral components. The adamantane-resistant IAV has established itself in nature, and a majority of the IAV subtypes, especially the most common H1N1 and H3N2, circulating globally are resistant to adamantanes. Consequently, adamantanes have become practically obsolete as anti-IAV drugs. Similarly, up to 100% of the globally circulating IAV H1N1 subtypes were resistant to oseltamivir, the most commonly used NAI, until 2009. However, the 2009 pandemic IAV H1N1 subtype, which was sensitive to NAIs and has now become one of the dominant seasonal influenza virus strains, has replaced the pre-2009 oseltamivir-resistant H1N1 variants. This review traces the epidemiology of both adamantane- and NAI-resistant IAV subtypes since the approval of these drugs and highlights the susceptibility status of currently circulating IAV subtypes to NAIs. Further, it provides an overview of currently and soon to be available control measures to manage current and emerging drug-resistant IAV. Finally, this review outlines the research directions that should be undertaken to manage the circulation of IAV in intermediate hosts and develop effective and alternative anti-IAV therapies.

324 citations