scispace - formally typeset
Search or ask a question
Author

Adam M. Johansen

Bio: Adam M. Johansen is an academic researcher from University of Warwick. The author has contributed to research in topics: Particle filter & Monte Carlo method. The author has an hindex of 23, co-authored 89 publications receiving 3338 citations. Previous affiliations of Adam M. Johansen include University of Cambridge & University of Bristol.


Papers
More filters
Book Chapter
01 Jan 2008
TL;DR: A complete, up-to-date survey of particle filtering methods as of 2008, including basic and advanced particle methods for filtering as well as smoothing.
Abstract: Optimal estimation problems for non-linear non-Gaussian state-space models do not typically admit analytic solutions. Since their introduction in 1993, particle filtering methods have become a very popular class of algorithms to solve these estimation problems numerically in an online manner, i.e. recursively as observations become available, and are now routinely used in fields as diverse as computer vision, econometrics, robotics and navigation. The objective of this tutorial is to provide a complete, up-to-date survey of this field as of 2008. Basic and advanced particle methods for filtering as well as smoothing are presented.

1,860 citations

Journal ArticleDOI
TL;DR: This interpretation allows for simple guidelines to ensure good performance of the APF and the first convergence results for this algorithm and shows that, contrary to popular belief, the asymptotic variance of APF-based estimators is not always smaller than those of the corresponding SISR estimators -- even in the 'perfect adaptation' scenario.

161 citations

Journal ArticleDOI
TL;DR: Novel likelihood-free approaches to model comparison are presented, based upon the independent estimation of the evidence of each model under study, which allow the exploitation of MCMC or SMC algorithms for exploring the parameter space, and that they do not require a sampler able to mix between models.
Abstract: Statistical methods of inference typically require the likelihood function to be computable in a reasonable amount of time. The class of "likelihood-free" methods termed Approximate Bayesian Computation (ABC) is able to eliminate this requirement, replacing the evaluation of the likelihood with simulation from it. Likelihood-free methods have gained in efficiency and popularity in the past few years, following their integration with Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) in order to better explore the parameter space. They have been applied primarily to estimating the parameters of a given model, but can also be used to compare models. Here we present novel likelihood-free approaches to model comparison, based upon the independent estimation of the evidence of each model under study. Key advantages of these approaches over previous techniques are that they allow the exploitation of MCMC or SMC algorithms for exploring the parameter space, and that they do not require a sampler able to mix between models. We validate the proposed methods using a simple exponential family problem before providing a realistic problem from human population genetics: the comparison of different demographic models based upon genetic data from the Y chromosome.

145 citations

Journal ArticleDOI
TL;DR: In this article, adaptive sequential Monte Carlo (SMC) sampling strategies to characterize the posterior distribution of a collection of models, as well as the parameters of those models are presented. But the performance of the proposed strategies is demonstrated via an extensive empirical study.
Abstract: Model comparison for the purposes of selection, averaging, and validation is a problem found throughout statistics Within the Bayesian paradigm, these problems all require the calculation of the posterior probabilities of models within a particular class Substantial progress has been made in recent years, but difficulties remain in the implementation of existing schemes This article presents adaptive sequential Monte Carlo (SMC) sampling strategies to characterize the posterior distribution of a collection of models, as well as the parameters of those models Both a simple product estimator and a combination of SMC and a path sampling estimator are considered and existing theoretical results are extended to include the path sampling variant A novel approach to the automatic specification of distributions within SMC algorithms is presented and shown to outperform the state of the art in this area The performance of the proposed strategies is demonstrated via an extensive empirical study Comparisons w

114 citations

Journal ArticleDOI
TL;DR: In this paper, an offline, iterated particle filter is presented to facilitate statistical inference in general state space hidden Markov models, given a model and a sequence of observations, the associated margina...
Abstract: We present an offline, iterated particle filter to facilitate statistical inference in general state space hidden Markov models. Given a model and a sequence of observations, the associated margina...

87 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1998
TL;DR: In this paper, the authors explore questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties, using diffusion processes as a model of a Markov process with continuous sample paths.
Abstract: We explore in this chapter questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties. This endeavor is really a study of diffusion processes. Loosely speaking, the term diffusion is attributed to a Markov process which has continuous sample paths and can be characterized in terms of its infinitesimal generator.

2,446 citations

Journal ArticleDOI
TL;DR: It is shown here how it is possible to build efficient high dimensional proposal distributions by using sequential Monte Carlo methods, which allows not only to improve over standard Markov chain Monte Carlo schemes but also to make Bayesian inference feasible for a large class of statistical models where this was not previously so.
Abstract: Summary. Markov chain Monte Carlo and sequential Monte Carlo methods have emerged as the two main tools to sample from high dimensional probability distributions. Although asymptotic convergence of Markov chain Monte Carlo algorithms is ensured under weak assumptions, the performance of these algorithms is unreliable when the proposal distributions that are used to explore the space are poorly chosen and/or if highly correlated variables are updated independently. We show here how it is possible to build efficient high dimensional proposal distributions by using sequential Monte Carlo methods. This allows us not only to improve over standard Markov chain Monte Carlo schemes but also to make Bayesian inference feasible for a large class of statistical models where this was not previously so. We demonstrate these algorithms on a non-linear state space model and a Levy-driven stochastic volatility model.

1,869 citations

Book Chapter
01 Jan 2008
TL;DR: A complete, up-to-date survey of particle filtering methods as of 2008, including basic and advanced particle methods for filtering as well as smoothing.
Abstract: Optimal estimation problems for non-linear non-Gaussian state-space models do not typically admit analytic solutions. Since their introduction in 1993, particle filtering methods have become a very popular class of algorithms to solve these estimation problems numerically in an online manner, i.e. recursively as observations become available, and are now routinely used in fields as diverse as computer vision, econometrics, robotics and navigation. The objective of this tutorial is to provide a complete, up-to-date survey of this field as of 2008. Basic and advanced particle methods for filtering as well as smoothing are presented.

1,860 citations

Journal ArticleDOI
TL;DR: Under linear, Gaussian assumptions on the target dynamics and birth process, the posterior intensity at any time step is a Gaussian mixture and closed-form recursions for propagating the means, covariances, and weights of the constituent Gaussian components of the posteriorintensity are derived.
Abstract: A new recursive algorithm is proposed for jointly estimating the time-varying number of targets and their states from a sequence of observation sets in the presence of data association uncertainty, detection uncertainty, noise, and false alarms. The approach involves modelling the respective collections of targets and measurements as random finite sets and applying the probability hypothesis density (PHD) recursion to propagate the posterior intensity, which is a first-order statistic of the random finite set of targets, in time. At present, there is no closed-form solution to the PHD recursion. This paper shows that under linear, Gaussian assumptions on the target dynamics and birth process, the posterior intensity at any time step is a Gaussian mixture. More importantly, closed-form recursions for propagating the means, covariances, and weights of the constituent Gaussian components of the posterior intensity are derived. The proposed algorithm combines these recursions with a strategy for managing the number of Gaussian components to increase efficiency. This algorithm is extended to accommodate mildly nonlinear target dynamics using approximation strategies from the extended and unscented Kalman filters

1,805 citations

Book
12 Mar 2012
TL;DR: Comprehensive and coherent, this hands-on text develops everything from basic reasoning to advanced techniques within the framework of graphical models, and develops analytical and problem-solving skills that equip them for the real world.
Abstract: Machine learning methods extract value from vast data sets quickly and with modest resources They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly People who know the methods have their choice of rewarding jobs This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world Numerous examples and exercises, both computer based and theoretical, are included in every chapter Resources for students and instructors, including a MATLAB toolbox, are available online

1,474 citations