scispace - formally typeset
Search or ask a question
Author

Adam Mh Young

Bio: Adam Mh Young is an academic researcher from Wellcome Trust Sanger Institute. The author has contributed to research in topics: Expression quantitative trait loci & Microglia. The author has an hindex of 1, co-authored 1 publications receiving 18 citations.

Papers
More filters
Posted ContentDOI
20 Dec 2019-bioRxiv
TL;DR: This study provides the first population-scale transcriptional map of a critically important cell for neurodegenerative disorders and fine-map candidate causal variants at risk loci for Alzheimer’s disease.
Abstract: Microglia, the tissue resident macrophages of the CNS, are implicated in a broad range of neurological pathologies, from acute brain injury to dementia. Here, we profiled gene expression variation in primary human microglia isolated from 141 patients undergoing neurosurgery. Using single cell and bulk RNA sequencing, we defined distinct cellular populations of acutely in vivo-activated microglia, and characterised a dramatic switch in microglial population composition in patients suffering from acute brain injury. We mapped expression quantitative trait loci (eQTLs) in human microglia and show that many disease-associated eQTLs in microglia replicate well in a human induced pluripotent stem cell (hIPSC) derived macrophage model system. Using ATAC-seq from 95 individuals in this hIPSC model we fine-map candidate causal variants at risk loci for Alzheimer9s disease, the most prevalent neurodegenerative condition in acute brain injury patients. Our study provides the first population-scale transcriptional map of a critically important cell for neurodegenerative disorders.

68 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors performed an updated genome-wide AD meta-analysis, which identified 37 risk loci, including new associations near CCDC6, TSPAN14, NCK2 and SPRED2.
Abstract: Genome-wide association studies have discovered numerous genomic loci associated with Alzheimer's disease (AD); yet the causal genes and variants are incompletely identified. We performed an updated genome-wide AD meta-analysis, which identified 37 risk loci, including new associations near CCDC6, TSPAN14, NCK2 and SPRED2. Using three SNP-level fine-mapping methods, we identified 21 SNPs with >50% probability each of being causally involved in AD risk and others strongly suggested by functional annotation. We followed this with colocalization analyses across 109 gene expression quantitative trait loci datasets and prioritization of genes by using protein interaction networks and tissue-specific expression. Combining this information into a quantitative score, we found that evidence converged on likely causal genes, including the above four genes, and those at previously discovered AD loci, including BIN1, APH1B, PTK2B, PILRA and CASS4.

189 citations

Journal ArticleDOI
TL;DR: In this article, the authors integrated Alzheimer's disease (AD) GWAS data with myeloid cell genomics, and reported that myELoid active enhancers are most burdened by AD risk alleles.
Abstract: Genome-wide association studies (GWAS) have identified more than 40 loci associated with Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Previously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic annotations. Here, we show that they are specifically enriched in active enhancers of monocytes, macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and transcriptomic datasets using analytical approaches to link myeloid enhancer activity to target gene expression regulation and AD risk modification. We identify AD risk enhancers and nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-mapping of these enhancers nominates candidate functional variants that likely modify AD risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-derived microglia and brain. Taken together, this study integrates AD GWAS with multiple myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates candidate functional variants, regulatory elements and genes that likely modulate disease susceptibility. This study integrates Alzheimer’s disease (AD) GWAS data with myeloid cell genomics, and reports that myeloid active enhancers are most burdened by AD risk alleles. The authors also nominate candidate causal regulatory elements, variants and genes that likely modulate the risk for AD.

95 citations

Journal ArticleDOI
TL;DR: In this paper , the authors describe the transcriptome analysis of 255 primary human microglial samples isolated at autopsy from multiple brain regions of 100 individuals and performed systematic analyses to investigate various aspects of microglia heterogeneities, including brain region and aging.
Abstract: Microglia have emerged as important players in brain aging and pathology. To understand how genetic risk for neurological and psychiatric disorders is related to microglial function, large transcriptome studies are essential. Here we describe the transcriptome analysis of 255 primary human microglial samples isolated at autopsy from multiple brain regions of 100 individuals. We performed systematic analyses to investigate various aspects of microglial heterogeneities, including brain region and aging. We mapped expression and splicing quantitative trait loci and showed that many neurological disease susceptibility loci are mediated through gene expression or splicing in microglia. Fine-mapping of these loci nominated candidate causal variants that are within microglia-specific enhancers, finding associations with microglial expression of USP6NL for Alzheimer’s disease and P2RY12 for Parkinson’s disease. We have built the most comprehensive catalog to date of genetic effects on the microglial transcriptome and propose candidate functional variants in neurological and psychiatric disorders. Transcriptomic analyses of 255 primary human microglial samples from 100 individuals highlight brain region, age, sex and disease states as sources of microglial heterogeneity. Molecular quantitative trait locus analyses implicate variants involved in neurological diseases through effects on gene expression and splicing.

66 citations

Posted ContentDOI
29 Jan 2020-bioRxiv
TL;DR: The eQTL Catalogue is presented, a resource which contains quality controlled, uniformly recomputed QTLs from 21 eQtl studies, and it is found that for matching cell types and tissues, the eZTL effect sizes are highly reproducible between studies, enabling the integrative analysis of these data.
Abstract: An increasing number of gene expression quantitative trait locus (QTL) studies have made summary statistics publicly available, which can be used to gain insight into human complex traits by downstream analyses such as fine-mapping and colocalisation. However, differences between these datasets in their variants tested, allele codings, and in the transcriptional features quantified are a barrier to their widespread use. Here, we present the eQTL Catalogue, a resource which contains quality controlled, uniformly re-computed QTLs from 19 eQTL publications. In addition to gene expression QTLs, we have also identified QTLs at the level of exon expression, transcript usage, and promoter, splice junction and 3ʹ end usage. Our summary statistics can be downloaded by FTP or accessed via a REST API and are also accessible via the Open Targets Genetics Portal. We demonstrate how the eQTL Catalogue and GWAS Catalog APIs can be used to perform colocalisation analysis between GWAS and QTL results without downloading and reformatting summary statistics. New datasets will continuously be added to the eQTL Catalogue, enabling systematic interpretation of human GWAS associations across a large number of cell types and tissues. The eQTL Catalogue is available at https://www.ebi.ac.uk/eqtl/.

62 citations

Journal ArticleDOI
TL;DR: In this article , the authors describe the transcriptome analysis of 255 primary human microglial samples isolated at autopsy from multiple brain regions of 100 individuals and performed systematic analyses to investigate various aspects of microglia heterogeneities, including brain region and aging.
Abstract: Microglia have emerged as important players in brain aging and pathology. To understand how genetic risk for neurological and psychiatric disorders is related to microglial function, large transcriptome studies are essential. Here we describe the transcriptome analysis of 255 primary human microglial samples isolated at autopsy from multiple brain regions of 100 individuals. We performed systematic analyses to investigate various aspects of microglial heterogeneities, including brain region and aging. We mapped expression and splicing quantitative trait loci and showed that many neurological disease susceptibility loci are mediated through gene expression or splicing in microglia. Fine-mapping of these loci nominated candidate causal variants that are within microglia-specific enhancers, finding associations with microglial expression of USP6NL for Alzheimer’s disease and P2RY12 for Parkinson’s disease. We have built the most comprehensive catalog to date of genetic effects on the microglial transcriptome and propose candidate functional variants in neurological and psychiatric disorders. Transcriptomic analyses of 255 primary human microglial samples from 100 individuals highlight brain region, age, sex and disease states as sources of microglial heterogeneity. Molecular quantitative trait locus analyses implicate variants involved in neurological diseases through effects on gene expression and splicing.

60 citations