scispace - formally typeset
Search or ask a question
Author

Adam Slipinski

Bio: Adam Slipinski is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Genus & Longhorn beetle. The author has an hindex of 13, co-authored 45 publications receiving 2867 citations.
Topics: Genus, Longhorn beetle, Biology, Cucujoidea, Subfamily


Papers
More filters
Journal ArticleDOI
Bernhard Misof, Shanlin Liu, Karen Meusemann1, Ralph S. Peters, Alexander Donath, Christoph Mayer, Paul B. Frandsen2, Jessica L. Ware2, Tomas Flouri3, Rolf G. Beutel4, Oliver Niehuis, Malte Petersen, Fernando Izquierdo-Carrasco3, Torsten Wappler5, Jes Rust5, Andre J. Aberer3, Ulrike Aspöck6, Ulrike Aspöck7, Horst Aspöck7, Daniela Bartel7, Alexander Blanke8, Simon Berger3, Alexander Böhm7, Thomas R. Buckley9, Brett Calcott10, Junqing Chen, Frank Friedrich11, Makiko Fukui12, Mari Fujita8, Carola Greve, Peter Grobe, Shengchang Gu, Ying Huang, Lars S. Jermiin1, Akito Y. Kawahara13, Lars Krogmann14, Martin Kubiak11, Robert Lanfear15, Robert Lanfear16, Robert Lanfear17, Harald Letsch7, Yiyuan Li, Zhenyu Li, Jiguang Li, Haorong Lu, Ryuichiro Machida8, Yuta Mashimo8, Pashalia Kapli3, Pashalia Kapli18, Duane D. McKenna19, Guanliang Meng, Yasutaka Nakagaki8, José Luis Navarrete-Heredia20, Michael Ott21, Yanxiang Ou, Günther Pass7, Lars Podsiadlowski5, Hans Pohl4, Björn M. von Reumont22, Kai Schütte11, Kaoru Sekiya8, Shota Shimizu8, Adam Slipinski1, Alexandros Stamatakis3, Alexandros Stamatakis23, Wenhui Song, Xu Su, Nikolaus U. Szucsich7, Meihua Tan, Xuemei Tan, Min Tang, Jingbo Tang, Gerald Timelthaler7, Shigekazu Tomizuka8, Michelle D. Trautwein24, Xiaoli Tong25, Toshiki Uchifune8, Manfred Walzl7, Brian M. Wiegmann26, Jeanne Wilbrandt, Benjamin Wipfler4, Thomas K. F. Wong1, Qiong Wu, Gengxiong Wu, Yinlong Xie, Shenzhou Yang, Qing Yang, David K. Yeates1, Kazunori Yoshizawa27, Qing Zhang, Rui Zhang, Wenwei Zhang, Yunhui Zhang, Jing Zhao, Chengran Zhou, Lili Zhou, Tanja Ziesmann, Shijie Zou, Yingrui Li, Xun Xu, Yong Zhang, Huanming Yang, Jian Wang, Jun Wang, Karl M. Kjer2, Xin Zhou 
07 Nov 2014-Science
TL;DR: The phylogeny of all major insect lineages reveals how and when insects diversified and provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.
Abstract: Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.

1,998 citations

Journal ArticleDOI
TL;DR: In order to infer phylogenetic relationships within the extraordinarily speciesrich order Coleoptera, a cladistic analysis is performed, in which 516 adult and larval morphological characters are scored for 359 beetle taxa, representing 314 families or subfamilies plus seven outgroup taxa representing seven holometabolan orders.
Abstract: . In order to infer phylogenetic relationships within the extraordinarily speciesrich order Coleoptera, a cladistic analysis is performed, in which 516 adult and larval morphological characters are scored for 359 beetle taxa, representing 314 families or subfamilies plus seven outgroup taxa representing seven holometabolan orders. Many morphological features are discussed at length with accompanying illustrations, and an attempt is made to homologize these and employ a uniform set of terms throughout the order. The resulting data matrix is analyzed using the parsimony ratchet in conjunction with implied weighting. The resulting most parsimonious tree found the order Strepsiptera to be sister to Coleoptera, each of the four coleopteran suborders to be monophyletic and subordinal relationships as follows: (Archostemata + Adephaga) + (Myxophaga + Polyphaga), but without significant support for either clade. The topology of the remainder of the tree is consistent with many prior molecular and morpholo...

516 citations

Journal ArticleDOI
TL;DR: A phylogeny of beetles based on DNA sequence data from eight nuclear genes, including six single‐copy nuclear protein‐coding genes, for 367 species representing 172 of 183 extant families provides a uniquely well‐resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera.
Abstract: © 2015 The Authors. Systematic Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society This is an open access article under the terms of the Creative Commons AttributionߚNonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

419 citations

BookDOI
14 Oct 2013
TL;DR: This three-volume series represents a comprehensive treatment of the beetles of Australia, a relatively under-studied fauna that includes many unusual and unique lineages found nowhere else on Earth.
Abstract: This three-volume series represents a comprehensive treatment of the beetles of Australia, a relatively under-studied fauna that includes many unusual and unique lineages found nowhere else on Earth. Volume 1 contains keys to all 117 beetle families found in Australia, and includes over 1100 illustrations of adults, larvae and anatomical structures. This volume is based in part on Lawrence & Britton’s out-of-print Australian Beetles, but is fully updated and expanded. The biology and morphology for all major beetle lineages is described and illustrated, along with anatomical terms which clarify the characters and terminology used in the keys; few other resources for beetle identification include such a detailed morphological background. A chapter on the fossil record is also included, and family sections provide full descriptions of adults and larvae, including the world distribution of each family. The revised identification keys (currently recognised as one of the most valuable keys worldwide) will aid quarantine agents, biologists and students in identifying members of the most species-rich order of animals.

131 citations

Bernhard Misof, Shanlin Liu, Karen Meusemann, Ralph S. Peters, Alexander Donath, Christoph Mayer, Paul B. Frandsen, Jessica L. Ware, Tomas Flouri, Rolf G. Beutel, Oliver Niehuis, Malte Petersen, Fernando Izquierdo-Carrasco, Torsten Wappler, Jes Rust, Andre J. Aberer, Ulrike Aspöck, Horst Aspöck, Daniela Bartel, Alexander Blanke, Simon Berger, Alexander Böhm, Thomas R. Buckley, Brett Calcott, Junqing Chen, Frank Friedrich, Makiko Fukui, Mari Fujita, Carola Greve, Peter Grobe, Shengchang Gu, Ying Huang, Lars S. Jermiin, Akito Y. Kawahara, Lars Krogmann, Martin Kubiak, Robert Lanfear, Harald Letsch, Yiyuan Li, Zhenyu Li, Jiguang Li, Haorong Lu, Ryuichiro Machida, Yuta Mashimo, Pashalia Kapli, Duane D. McKenna, Guanliang Meng, Yasutaka Nakagaki, José Luis Navarrete-Heredia, Michael Ott, Yanxiang Ou, Günther Pass, Lars Podsiadlowski, Hans Pohl, Björn M. von Reumont, Kai Schütte, Kaoru Sekiya, Shota Shimizu, Adam Slipinski, Alexandros Stamatakis, Wenhui Song, Xu Su, Nikolaus U. Szucsich, Meihua Tan, Xuemei Tan, Min Tang, Jingbo Tang, Gerald Timelthaler, Shigekazu Tomizuka, Michelle D. Trautwein, Xiaoli Tong, Toshiki Uchifune, Manfred Walzl, Brian M. Wiegmann, Jeanne Wilbrandt, Benjamin Wipfler, Thomas K. F. Wong, Qiong Wu, Gengxiong Wu, Yinlong Xie, Shenzhou Yang, Qing Yang, David K. Yeates, Kazunori Yoshizawa, Qing Zhang, Rui Zhang, Wenwei Zhang, Yunhui Zhang, Jing Zhao, Chengran Zhou, Lili Zhou, Tanja Ziesmann, Shijie Zou, Yingrui Li, Xun Xu, Yong Zhang, Huanming Yang, Jian Wang, Jun Wang, Karl M. Kjer, Xin Zhou 
01 Jan 2014
TL;DR: A phylogenetic analysis of protein-coding genes from all major insect orders and close relatives was performed by Misof et al. as discussed by the authors, who used this resolved phylogenetic tree together with fossil analysis to date the origin of insects to ~479 million years ago and to resolve longcontroversial subjects in insect phylogeny.
Abstract: Toward an insect evolution resolution Insects are the most diverse group of animals, with the largest number of species. However, many of the evolutionary relationships between insect species have been controversial and difficult to resolve. Misof et al. performed a phylogenomic analysis of protein-coding genes from all major insect orders and close relatives, resolving the placement of taxa. The authors used this resolved phylogenetic tree together with fossil analysis to date the origin of insects to ~479 million years ago and to resolve long-controversial subjects in insect phylogeny. Science, this issue p. 763 The phylogeny of all major insect lineages reveals how and when insects diversified. Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.

52 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: PartitionFinder 2 is a program for automatically selecting best-fit partitioning schemes and models of evolution for phylogenetic analyses that includes the ability to analyze morphological datasets, new methods to analyze genome-scale datasets, and new output formats to facilitate interoperability with downstream software.
Abstract: PartitionFinder 2 is a program for automatically selecting best-fit partitioning schemes and models of evolution for phylogenetic analyses. PartitionFinder 2 is substantially faster and more efficient than version 1, and incorporates many new methods and features. These include the ability to analyze morphological datasets, new methods to analyze genome-scale datasets, new output formats to facilitate interoperability with downstream software, and many new models of molecular evolution. PartitionFinder 2 is freely available under an open source license and works on Windows, OSX, and Linux operating systems. It can be downloaded from www.robertlanfear.com/partitionfinder. The source code is available at https://github.com/brettc/partitionfinder.

3,445 citations

Journal ArticleDOI
TL;DR: RAxML-NG is presented, a from-scratch re-implementation of the established greedy tree search algorithm of RAxML/ExaML, which offers improved accuracy, flexibility, speed, scalability, and usability compared with RAx ML/ exaML.
Abstract: MOTIVATION Phylogenies are important for fundamental biological research, but also have numerous applications in biotechnology, agriculture and medicine. Finding the optimal tree under the popular maximum likelihood (ML) criterion is known to be NP-hard. Thus, highly optimized and scalable codes are needed to analyze constantly growing empirical datasets. RESULTS We present RAxML-NG, a from-scratch re-implementation of the established greedy tree search algorithm of RAxML/ExaML. RAxML-NG offers improved accuracy, flexibility, speed, scalability, and usability compared with RAxML/ExaML. On taxon-rich datasets, RAxML-NG typically finds higher-scoring trees than IQTree, an increasingly popular recent tool for ML-based phylogenetic inference (although IQ-Tree shows better stability). Finally, RAxML-NG introduces several new features, such as the detection of terraces in tree space and the recently introduced transfer bootstrap support metric. AVAILABILITY AND IMPLEMENTATION The code is available under GNU GPL at https://github.com/amkozlov/raxml-ng. RAxML-NG web service (maintained by Vital-IT) is available at https://raxml-ng.vital-it.ch/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

1,765 citations

Journal ArticleDOI
TL;DR: This work presents BUSCO v3 with example analyses that highlight the wide‐ranging utility of BUSCO assessments, which extend beyond quality control of genomics data sets to applications in comparative genomics analyses, gene predictor training, metagenomics, and phylogenomics.
Abstract: Genomics promises comprehensive surveying of genomes and metagenomes, but rapidly changing technologies and expanding data volumes make evaluation of completeness a challenging task. Technical sequencing quality metrics can be complemented by quantifying completeness of genomic data sets in terms of the expected gene content of Benchmarking Universal Single-Copy Orthologs (BUSCO, http://busco.ezlab.org). The latest software release implements a complete refactoring of the code to make it more flexible and extendable to facilitate high-throughput assessments. The original six lineage assessment data sets have been updated with improved species sampling, 34 new subsets have been built for vertebrates, arthropods, fungi, and prokaryotes that greatly enhance resolution, and data sets are now also available for nematodes, protists, and plants. Here, we present BUSCO v3 with example analyses that highlight the wide-ranging utility of BUSCO assessments, which extend beyond quality control of genomics data sets to applications in comparative genomics analyses, gene predictor training, metagenomics, and phylogenomics.

1,575 citations

Journal ArticleDOI
22 Oct 2015-Nature
TL;DR: The results of the divergence time analyses are congruent with the palaeontological record, supporting a major radiation of crown birds in the wake of the Cretaceous–Palaeogene (K–Pg) mass extinction.
Abstract: Although reconstruction of the phylogeny of living birds has progressed tremendously in the last decade, the evolutionary history of Neoaves--a clade that encompasses nearly all living bird species--remains the greatest unresolved challenge in dinosaur systematics. Here we investigate avian phylogeny with an unprecedented scale of data: >390,000 bases of genomic sequence data from each of 198 species of living birds, representing all major avian lineages, and two crocodilian outgroups. Sequence data were collected using anchored hybrid enrichment, yielding 259 nuclear loci with an average length of 1,523 bases for a total data set of over 7.8 × 10(7) bases. Bayesian and maximum likelihood analyses yielded highly supported and nearly identical phylogenetic trees for all major avian lineages. Five major clades form successive sister groups to the rest of Neoaves: (1) a clade including nightjars, other caprimulgiforms, swifts, and hummingbirds; (2) a clade uniting cuckoos, bustards, and turacos with pigeons, mesites, and sandgrouse; (3) cranes and their relatives; (4) a comprehensive waterbird clade, including all diving, wading, and shorebirds; and (5) a comprehensive landbird clade with the enigmatic hoatzin (Opisthocomus hoazin) as the sister group to the rest. Neither of the two main, recently proposed Neoavian clades--Columbea and Passerea--were supported as monophyletic. The results of our divergence time analyses are congruent with the palaeontological record, supporting a major radiation of crown birds in the wake of the Cretaceous-Palaeogene (K-Pg) mass extinction.

1,094 citations

Journal ArticleDOI
04 Apr 2011-ZooKeys
TL;DR: A catalogue of 4887 family-group names based on 4707 distinct genera in Coleoptera is given, which recognizes as valid 24 superfamilies, 211 families, 541 subfamilies, 1663 tribes and 740 subtribes.
Abstract: We synthesize data on all known extant and fossil Coleoptera family-group names for the first time. A catalogue of 4887 family-group names (124 fossil, 4763 extant) based on 4707 distinct genera in Coleoptera is given. A total of 4492 names are available, 183 of which are permanently invalid because they are based on a preoccupied or a suppressed type genus. Names are listed in a classification framework. We recognize as valid 24 superfamilies, 211 families, 541 subfamilies, 1663 tribes and 740 subtribes. For each name, the original spelling, author, year of publication, page number, correct stem and type genus are included. The original spelling and availability of each name were checked from primary literature. A list of necessary changes due to Priority and Homonymy problems, and actions taken, is given. Current usage of names was conserved, whenever possible, to promote stability of the classification. New synonymies (family-group names followed by genus-group names): Agronomina Gistel, 1848 syn. nov. of Amarina Zimmermann, 1832 (Carabidae), Hylepnigalioini Gistel, 1856 syn. nov. of Melandryini Leach, 1815 (Melandryidae), Polycystophoridae Gistel, 1856 syn. nov. of Malachiinae Fleming, 1821 (Melyridae), Sclerasteinae Gistel, 1856 syn. nov. of Ptilininae Shuckard, 1839 (Ptinidae), Phloeonomini Adam, 2001 syn. nov. of Omaliini MacLeay, 1825 (Staphylinidae), Sepedophilini Adam, 2001 syn. nov. of Tachyporini MacLeay, 1825 (Staphylinidae), Phibalini Gistel, 1856 syn. nov. of Cteniopodini Solier, 1835 (Tenebrionidae); Agronoma Gistel 1848 (type species Carabus familiaris Duftschmid, 1812, designated herein) syn. nov. of Amara Bonelli, 1810 (Carabidae), Hylepnigalio Gistel, 1856 (type species Chrysomela caraboides Linnaeus, 1760, by monotypy) syn. nov. of Melandrya Fabricius, 1801 (Melandryidae), Polycystophorus Gistel, 1856 (type species Cantharis aeneus Linnaeus, 1758, designated herein) syn. nov. of Malachius Fabricius, 1775 (Melyridae), Sclerastes Gistel, 1856 (type species Ptilinus costatus Gyllenhal, 1827, designated herein) syn. nov. of Ptilinus Geoffroy, 1762 (Ptinidae), Paniscus Gistel, 1848 (type species Scarabaeus fasciatus Linnaeus, 1758, designated herein) syn. nov. of Trichius Fabricius, 1775 (Scarabaeidae), Phibalus Gistel, 1856 (type species Chrysomela pubescens Linnaeus, 1758, by monotypy) syn. nov. of Omophlus Dejean, 1834 (Tenebrionidae). The following new replacement name is proposed: Gompeliina Bouchard, 2011 nom. nov. for Olotelina Baguena Corella, 1948 (Aderidae). Reversal of Precedence (Article 23.9) is used to conserve usage of the following names (family-group names followed by genus-group names): Perigonini Horn, 1881 nom. protectum over Trechicini Bates, 1873 nom. oblitum (Carabidae), Anisodactylina Lacordaire, 1854 nom. protectum over Eurytrichina LeConte, 1848 nom. oblitum (Carabidae), Smicronychini Seidlitz, 1891 nom. protectum over Desmorini LeConte, 1876 nom. oblitum (Curculionidae), Bagoinae Thomson, 1859 nom. protectum over Lyprinae Gistel 1848 nom. oblitum (Curculionidae), Aterpina Lacordaire, 1863 nom. protectum over Heliomenina Gistel, 1848 nom. oblitum (Curculionidae), Naupactini Gistel, 1848 nom. protectum over Iphiini Schonherr, 1823 nom. oblitum (Curculionidae), Cleonini Schonherr, 1826 nom. protectum over Geomorini Schonherr, 1823 nom. oblitum (Curculionidae), Magdalidini Pascoe, 1870 nom. protectum over Scardamyctini Gistel, 1848 nom. oblitum (Curculionidae), Agrypninae/-ini Candeze, 1857 nom. protecta over Adelocerinae/-ini Gistel, 1848 nom. oblita and Pangaurinae/-ini Gistel, 1856 nom. oblita (Elateridae), Prosternini Gistel, 1856 nom. protectum over Diacanthini Gistel, 1848 nom. oblitum (Elateridae), Calopodinae Costa, 1852 nom. protectum over Sparedrinae Gistel, 1848 nom. oblitum (Oedemeridae), Adesmiini Lacordaire, 1859 nom. protectum over Macropodini Agassiz, 1846 nom. oblitum (Tenebrionidae), Bolitophagini Kirby, 1837 nom. protectum over Eledonini Billberg, 1820 nom. oblitum (Tenebrionidae), Throscidae Laporte, 1840 nom. protectum over Stereolidae Rafinesque, 1815 nom. oblitum (Throscidae) and Lophocaterini Crowson, 1964 over Lycoptini Casey, 1890 nom. oblitum (Trogossitidae); Monotoma Herbst, 1799 nom. protectum over Monotoma Panzer, 1792 nom. oblitum (Monotomidae); Pediacus Shuckard, 1839 nom. protectum over Biophloeus Dejean, 1835 nom. oblitum (Cucujidae), Pachypus Dejean, 1821 nom. protectum over Pachypus Billberg, 1820 nom. oblitum (Scarabaeidae), Sparrmannia Laporte, 1840 nom. protectum over Leocaeta Dejean, 1833 nom. oblitum and Cephalotrichia Hope, 1837 nom. oblitum (Scarabaeidae).

935 citations