scispace - formally typeset
Search or ask a question
Author

Adel Belouchrani

Bio: Adel Belouchrani is an academic researcher from École Normale Supérieure. The author has contributed to research in topics: Blind signal separation & Source separation. The author has an hindex of 29, co-authored 182 publications receiving 6036 citations. Previous affiliations of Adel Belouchrani include University of California, Berkeley & Télécom ParisTech.


Papers
More filters
Journal ArticleDOI
TL;DR: A new source separation technique exploiting the time coherence of the source signals is introduced, which relies only on stationary second-order statistics that are based on a joint diagonalization of a set of covariance matrices.
Abstract: Separation of sources consists of recovering a set of signals of which only instantaneous linear mixtures are observed. In many situations, no a priori information on the mixing matrix is available: The linear mixture should be "blindly" processed. This typically occurs in narrowband array processing applications when the array manifold is unknown or distorted. This paper introduces a new source separation technique exploiting the time coherence of the source signals. In contrast with other previously reported techniques, the proposed approach relies only on stationary second-order statistics that are based on a joint diagonalization of a set of covariance matrices. Asymptotic performance analysis of this method is carried out; some numerical simulations are provided to illustrate the effectiveness of the proposed method.

2,721 citations

Journal ArticleDOI
TL;DR: The effects of spreading the noise power while localizing the source energy in the t-f domain amounts to increasing the robustness of the proposed approach with respect to noise and, hence, improved performance.
Abstract: Blind source separation consists of recovering a set of signals of which only instantaneous linear mixtures are observed. Thus far, this problem has been solved using statistical information available on the source signals. This paper introduces a new blind source separation approach exploiting the difference in the time-frequency (t-f) signatures of the sources to be separated. The approach is based on the diagonalization of a combined set of "spatial t-f distributions". In contrast to existing techniques, the proposed approach allows the separation of Gaussian sources with identical spectral shape but with different t-f localization properties. The effects of spreading the noise power while localizing the source energy in the t-f domain amounts to increasing the robustness of the proposed approach with respect to noise and, hence, improved performance. Asymptotic performance analysis and numerical simulations are provided.

450 citations

Journal ArticleDOI
TL;DR: This paper will study the problem of broken rotor bars, end-ring segment, and loss of stator phase during operation of induction machines based on the discrete wavelet transform.
Abstract: This paper deals with fault diagnosis of induction machines based on the discrete wavelet transform. By using the wavelet decomposition, the information on the health of a system can be extracted from a signal over a wide range of frequencies. This analysis is performed in both time and frequency domains. The Daubechies wavelet is selected for the analysis of the stator current. Wavelet components appear to be useful for detecting different electrical faults. In this paper, we will study the problem of broken rotor bars, end-ring segment, and loss of stator phase during operation.

286 citations

Journal ArticleDOI
TL;DR: This paper examines the use of wavelet detail coefficients for the accurate detection of different QRS morphologies in ECG based on the power spectrum of QRS complexes in different energy levels since it differs from normal beats to abnormal ones.

237 citations

Journal ArticleDOI
TL;DR: Once the signal and noise subspaces are estimated, any subspace based approach, including the multiple signal classification (MUSIC) algorithm, can be applied for direction of arrival (DOA) estimation.
Abstract: A new method for the estimation of the signal subspace and noise subspace based on time-frequency signal representations is introduced. The proposed approach consists of the joint block-diagonalization (JBD) of a set of spatial time-frequency distribution matrices. Once the signal and noise subspaces are estimated, any subspace based approach, including the multiple signal classification (MUSIC) algorithm, can be applied for direction of arrival (DOA) estimation. Performance of the proposed time-frequency MUSIC (TF-MUSIC) for an impinging chirp signal using three different kernels is numerically evaluated.

182 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Reference EntryDOI
31 Aug 2012
TL;DR: A statistical generative model called independent component analysis is discussed, which shows how sparse coding can be interpreted as providing a Bayesian prior, and answers some questions which were not properly answered in the sparse coding framework.
Abstract: Independent component models have gained increasing interest in various fields of applications in recent years. The basic independent component model is a semiparametric model assuming that a p-variate observed random vector is a linear transformation of an unobserved vector of p independent latent variables. This linear transformation is given by an unknown mixing matrix, and one of the main objectives of independent component analysis (ICA) is to estimate an unmixing matrix by means of which the latent variables can be recovered. In this article, we discuss the basic independent component model in detail, define the concepts and analysis tools carefully, and consider two families of ICA estimates. The statistical properties (consistency, asymptotic normality, efficiency, robustness) of the estimates can be analyzed and compared via the so called gain matrices. Some extensions of the basic independent component model, such as models with additive noise or models with dependent observations, are briefly discussed. The article ends with a short example. Keywords: blind source separation; fastICA; independent component model; independent subspace analysis; mixing matrix; overcomplete ICA; undercomplete ICA; unmixing matrix

2,976 citations

01 Jan 2012
TL;DR: The standardization of the IC model is talked about, and on the basis of n independent copies of x, the aim is to find an estimate of an unmixing matrix Γ such that Γx has independent components.

2,296 citations

Journal ArticleDOI
01 Oct 1998
TL;DR: The objectives of this paper are to review some of the approaches that have been developed to address blind signal separation and independent component analysis, to illustrate how they stem from basic principles, and to show how they relate to each other.
Abstract: Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis that aim to recover unobserved signals or "sources" from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mutual independence between the signals. The weakness of the assumptions makes it a powerful approach, but it requires us to venture beyond familiar second order statistics, The objectives of this paper are to review some of the approaches that have been developed to address this problem, to illustrate how they stem from basic principles, and to show how they relate to each other.

1,890 citations