scispace - formally typeset
Search or ask a question
Author

Adel Javanmard

Bio: Adel Javanmard is an academic researcher from University of Southern California. The author has contributed to research in topics: Regret & Estimator. The author has an hindex of 26, co-authored 86 publications receiving 3393 citations. Previous affiliations of Adel Javanmard include Sharif University of Technology & Stanford University.


Papers
More filters
Journal Article
TL;DR: In this paper, a de-biased version of regularized M-estimators is proposed to construct confidence intervals and p-values for high-dimensional linear regression models, and the resulting confidence intervals have nearly optimal size.
Abstract: Fitting high-dimensional statistical models often requires the use of non-linear parameter estimation procedures. As a consequence, it is generally impossible to obtain an exact characterization of the probability distribution of the parameter estimates. This in turn implies that it is extremely challenging to quantify the uncertainty associated with a certain parameter estimate. Concretely, no commonly accepted procedure exists for computing classical measures of uncertainty and statistical significance as confidence intervals or p- values for these models. We consider here high-dimensional linear regression problem, and propose an efficient algorithm for constructing confidence intervals and p-values. The resulting confidence intervals have nearly optimal size. When testing for the null hypothesis that a certain parameter is vanishing, our method has nearly optimal power. Our approach is based on constructing a 'de-biased' version of regularized M-estimators. The new construction improves over recent work in the field in that it does not assume a special structure on the design matrix. We test our method on synthetic data and a high-throughput genomic data set about riboflavin production rate, made publicly available by Buhlmann et al. (2014).

697 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of learning a shallow neural network that best fits a training data set was studied in the over-parameterized regime, where the numbers of observations are fewer than the number of parameters in the model.
Abstract: In this paper, we study the problem of learning a shallow artificial neural network that best fits a training data set. We study this problem in the over-parameterized regime where the numbers of observations are fewer than the number of parameters in the model. We show that with the quadratic activations, the optimization landscape of training, such shallow neural networks, has certain favorable characteristics that allow globally optimal models to be found efficiently using a variety of local search heuristics. This result holds for an arbitrary training data of input/output pairs. For differentiable activation functions, we also show that gradient descent, when suitably initialized, converges at a linear rate to a globally optimal model. This result focuses on a realizable model where the inputs are chosen i.i.d. from a Gaussian distribution and the labels are generated according to planted weight coefficients.

425 citations

Journal ArticleDOI
TL;DR: An approximate message passing (AMP) algorithm is used and a rigorous proof is given that this approach is successful as soon as the undersampling rate δ exceeds the (upper) Rényi information dimension of the signal, d̅(pX).
Abstract: We study the compressed sensing reconstruction problem for a broad class of random, band-diagonal sensing matrices. This construction is inspired by the idea of spatial coupling in coding theory. As demonstrated heuristically and numerically by Krzakala [30], message passing algorithms can effectively solve the reconstruction problem for spatially coupled measurements with undersampling rates close to the fraction of nonzero coordinates. We use an approximate message passing (AMP) algorithm and analyze it through the state evolution method. We give a rigorous proof that this approach is successful as soon as the undersampling rate δ exceeds the (upper) Renyi information dimension of the signal, d(pX). More precisely, for a sequence of signals of diverging dimension n whose empirical distribution converges to pX, reconstruction is with high probability successful from d(pX) n+o(n) measurements taken according to a band diagonal matrix. For sparse signals, i.e., sequences of dimension n and k(n) nonzero entries, this implies reconstruction from k(n)+o(n) measurements. For “discrete” signals, i.e., signals whose coordinates take a fixed finite set of values, this implies reconstruction from o(n) measurements. The result is robust with respect to noise, does not apply uniquely to random signals, but requires the knowledge of the empirical distribution of the signal pX.

246 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider a class of approximated message passing (AMP) algorithms and characterize their highdimensional behavior in terms of a suitable state evolution recursion, which applies to Gaussian matrices with independent but not necessarily identically distributed entries.
Abstract: We consider a class of approximated message passing (AMP) algorithms and characterize their highdimensional behavior in terms of a suitable state evolution recursion. Our proof applies to Gaussian matrices with independent but not necessarily identically distributed entries. It covers—in particular—the analysis of generalized AMP, introduced by Rangan, and of AMP reconstruction in compressed sensing with spatially coupled sensing matrices. The proof technique builds on that of Bayati & Montanari [2], while simplifying and generalizing several steps.

194 citations

Posted Content
TL;DR: This work covers the analysis of generalized AMP, introduced by Rangan, and of AMP reconstruction in compressed sensing with spatially coupled sensing matrices, and the proof technique builds on the one of [BM11], while simplifying and generalizing several steps.
Abstract: We consider a class of approximated message passing (AMP) algorithms and characterize their high-dimensional behavior in terms of a suitable state evolution recursion. Our proof applies to Gaussian matrices with independent but not necessarily identically distributed entries. It covers --in particular-- the analysis of generalized AMP, introduced by Rangan, and of AMP reconstruction in compressed sensing with spatially coupled sensing matrices. The proof technique builds on the one of [BM11], while simplifying and generalizing several steps.

180 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

BookDOI
07 May 2015
TL;DR: Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data and extract useful and reproducible patterns from big datasets.
Abstract: Discover New Methods for Dealing with High-Dimensional Data A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data. Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of 1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso. In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.

2,275 citations

Journal ArticleDOI
TL;DR: This article reviews in a selective way the recent research on the interface between machine learning and the physical sciences, including conceptual developments in ML motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross fertilization between the two fields.
Abstract: Machine learning (ML) encompasses a broad range of algorithms and modeling tools used for a vast array of data processing tasks, which has entered most scientific disciplines in recent years. This article reviews in a selective way the recent research on the interface between machine learning and the physical sciences. This includes conceptual developments in ML motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross fertilization between the two fields. After giving a basic notion of machine learning methods and principles, examples are described of how statistical physics is used to understand methods in ML. This review then describes applications of ML methods in particle physics and cosmology, quantum many-body physics, quantum computing, and chemical and material physics. Research and development into novel computing architectures aimed at accelerating ML are also highlighted. Each of the sections describe recent successes as well as domain-specific methodology and challenges.

1,504 citations

ReportDOI
TL;DR: In this article, the authors show that the impact of regularization bias and overfitting on estimation of the parameter of interest θ0 can be removed by using two simple, yet critical, ingredients: (1) using Neyman-orthogonal moments/scores that have reduced sensitivity with respect to nuisance parameters, and (2) making use of cross-fitting, which provides an efficient form of data-splitting.
Abstract: Summary We revisit the classic semi-parametric problem of inference on a low-dimensional parameter θ0 in the presence of high-dimensional nuisance parameters η0. We depart from the classical setting by allowing for η0 to be so high-dimensional that the traditional assumptions (e.g. Donsker properties) that limit complexity of the parameter space for this object break down. To estimate η0, we consider the use of statistical or machine learning (ML) methods, which are particularly well suited to estimation in modern, very high-dimensional cases. ML methods perform well by employing regularization to reduce variance and trading off regularization bias with overfitting in practice. However, both regularization bias and overfitting in estimating η0 cause a heavy bias in estimators of θ0 that are obtained by naively plugging ML estimators of η0 into estimating equations for θ0. This bias results in the naive estimator failing to be N−1/2 consistent, where N is the sample size. We show that the impact of regularization bias and overfitting on estimation of the parameter of interest θ0 can be removed by using two simple, yet critical, ingredients: (1) using Neyman-orthogonal moments/scores that have reduced sensitivity with respect to nuisance parameters to estimate θ0; (2) making use of cross-fitting, which provides an efficient form of data-splitting. We call the resulting set of methods double or debiased ML (DML). We verify that DML delivers point estimators that concentrate in an N−1/2-neighbourhood of the true parameter values and are approximately unbiased and normally distributed, which allows construction of valid confidence statements. The generic statistical theory of DML is elementary and simultaneously relies on only weak theoretical requirements, which will admit the use of a broad array of modern ML methods for estimating the nuisance parameters, such as random forests, lasso, ridge, deep neural nets, boosted trees, and various hybrids and ensembles of these methods. We illustrate the general theory by applying it to provide theoretical properties of the following: DML applied to learn the main regression parameter in a partially linear regression model; DML applied to learn the coefficient on an endogenous variable in a partially linear instrumental variables model; DML applied to learn the average treatment effect and the average treatment effect on the treated under unconfoundedness; DML applied to learn the local average treatment effect in an instrumental variables setting. In addition to these theoretical applications, we also illustrate the use of DML in three empirical examples.

1,204 citations