scispace - formally typeset
Search or ask a question
Author

Adelheid Soubry

Other affiliations: Duke University
Bio: Adelheid Soubry is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Differentially methylated regions & DNA methylation. The author has an hindex of 17, co-authored 24 publications receiving 1688 citations. Previous affiliations of Adelheid Soubry include Duke University.

Papers
More filters
Journal ArticleDOI
TL;DR: The data indicate a preconceptional impact of paternal obesity on the reprogramming of imprint marks during spermatogenesis and suggest an increase in DNA methylation at the IGF2 and H19 DMRs among newborns from obese mothers, but a larger study is warranted to further explore the potential effects of maternal obesity or lifestyle on the offspring's epigenome.
Abstract: Data from epidemiological and animal model studies suggest that nutrition during pregnancy may affect the health status of subsequent generations. These transgenerational effects are now being explained by disruptions at the level of the epigenetic machinery. Besides in vitro environmental exposures, the possible impact on the reprogramming of methylation profiles at imprinted genes at a much earlier time point, such as during spermatogenesis or oogenesis, has not previously been considered. In this study, our aim was to determine associations between preconceptional obesity and DNA methylation profiles in the offspring, particularly at the differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene. We examined DNA from umbilical cord blood leukocytes from 79 newborns, born between July 2005 and November 2006 at Duke University Hospital, Durham, NC. Their mothers participated in the Newborn Epigenetics Study (NEST) during pregnancy. Parental characteristics were obtained via standardized questionnaires and medical records. DNA methylation patterns at two DMRs were analyzed by bisulfite pyrosequencing; one DMR upstream of IGF2 (IGF2 DMR), and one DMR upstream of the neighboring H19 gene (H19 DMR). Multiple regression models were used to determine potential associations between the offspring's DNA methylation patterns and parental obesity before conception. Obesity was defined as body mass index (BMI) ≥30 kg/m2. Hypomethylation at the IGF2 DMR was associated with paternal obesity. Even after adjusting for several maternal and newborn characteristics, we observed a persistent inverse association between DNA methylation in the offspring and paternal obesity (β-coefficient was -5.28, P = 0.003). At the H19 DMR, no significant associations were detected between methylation patterns and paternal obesity. Our data suggest an increase in DNA methylation at the IGF2 and H19 DMRs among newborns from obese mothers, but a larger study is warranted to further explore the potential effects of maternal obesity or lifestyle on the offspring's epigenome. While our small sample size is limited, our data indicate a preconceptional impact of paternal obesity on the reprogramming of imprint marks during spermatogenesis. Given the biological importance of imprinting fidelity, our study provides evidence for transgenerational effects of paternal obesity that may influence the offspring's future health status.

285 citations

Journal ArticleDOI
TL;DR: A significant and independent association between paternal obesity and the offspring’s methylation status suggests the susceptibility of the developing sperm for environmental insults and altered methylation outcomes at multiple imprint regulatory regions in children born to obese parents, compared with childrenBorn to non-obese parents.
Abstract: Several epidemiologic studies have demonstrated associations between periconceptional environmental exposures and health status of the offspring in later life. Although these environmentally related effects have been attributed to epigenetic changes, such as DNA methylation shifts at imprinted genes, little is known about the potential effects of maternal and paternal preconceptional overnutrition or obesity. We examined parental preconceptional obesity in relation to DNA methylation profiles at multiple human imprinted genes important in normal growth and development, such as: maternally expressed gene 3 (MEG3), mesoderm-specific transcript (MEST), paternally expressed gene 3 (PEG3), pleiomorphic adenoma gene-like 1 (PLAGL1), epsilon sarcoglycan and paternally expressed gene 10 (SGCE/PEG10) and neuronatin (NNAT). We measured methylation percentages at the differentially methylated regions (DMRs) by bisulfite pyrosequencing in DNA extracted from umbilical cord blood leukocytes of 92 newborns. Preconceptional obesity, defined as BMI ⩾30 kg m−2, was ascertained through standardized questionnaires. After adjusting for potential confounders and cluster effects, paternal obesity was significantly associated with lower methylation levels at the MEST (β=−2.57; s.e.=0.95; P=0.008), PEG3 (β=−1.71; s.e.=0.61; P=0.005) and NNAT (β=−3.59; s.e.=1.76; P=0.04) DMRs. Changes related to maternal obesity detected at other loci were as follows: β-coefficient was +2.58 (s.e.=1.00; P=0.01) at the PLAGL1 DMR and −3.42 (s.e.=1.69; P=0.04) at the MEG3 DMR. We found altered methylation outcomes at multiple imprint regulatory regions in children born to obese parents, compared with children born to non-obese parents. In spite of the small sample size, our data suggest a preconceptional influence of parental life-style or overnutrition on the (re)programming of imprint marks during gametogenesis and early development. More specifically, the significant and independent association between paternal obesity and the offspring’s methylation status suggests the susceptibility of the developing sperm for environmental insults. The acquired imprint instability may be carried onto the next generation and increase the risk for chronic diseases in adulthood.

283 citations

Journal ArticleDOI
TL;DR: This essay suggests the existence of epigenetic windows of susceptibility to environmental insults during sperm development and suggests changes in DNA methylation, histone modification, and non‐coding RNAs are viable mechanistic candidates for a non‐genetic transfer of paternal environmental information, from maturing germ cell to zygote.
Abstract: Literature on maternal exposures and the risk of epigenetic changes or diseases in the offspring is growing. Paternal contributions are often not considered. However, some animal and epidemiologic studies on various contaminants, nutrition, and lifestyle-related conditions suggest a paternal influence on the offspring's future health. The phenotypic outcomes may have been attributed to DNA damage or mutations, but increasing evidence shows that the inheritance of environmentally induced functional changes of the genome, and related disorders, are (also) driven by epigenetic components. In this essay we suggest the existence of epigenetic windows of susceptibility to environmental insults during sperm development. Changes in DNA methylation, histone modification, and non-coding RNAs are viable mechanistic candidates for a non-genetic transfer of paternal environmental information, from maturing germ cell to zygote. Inclusion of paternal factors in future research will ultimately improve the understanding of transgenerational epigenetic plasticity and health-related effects in future generations.

275 citations

Journal ArticleDOI
TL;DR: The data support that male overweight/obesity status is traceable in the sperm epigenome, and set the groundwork for future studies investigating male gametic methylation aberrations due to paternal lifestyle factors such as obesity.
Abstract: Epigenetic reprogramming in mammalian gametes resets methylation marks that regulate monoallelic expression of imprinted genes. In males, this involves erasure of the maternal methylation marks and establishment of paternal-specific methylation to appropriately guide normal development. The degree to which exogenous factors influence the fidelity of methylation reprogramming is unknown. We previously found an association between paternal obesity and altered DNA methylation in umbilical cord blood, suggesting that the father’s endocrine, nutritional, or lifestyle status could potentiate intergenerational heritable epigenetic abnormalities. In these analyses, we examine the relationship between male overweight/obesity and DNA methylation status of imprinted gene regulatory regions in the gametes. Linear regression models were used to compare sperm DNA methylation percentages, quantified by bisulfite pyrosequencing, at 12 differentially methylated regions (DMRs) from 23 overweight/obese and 44 normal weight men. Our study population included 69 volunteers from The Influence of the Environment on Gametic Epigenetic Reprogramming (TIEGER) study, based in NC, USA. After adjusting for age and fertility patient status, semen from overweight or obese men had significantly lower methylation percentages at the MEG3 (β = −1.99; SE = 0.84; p = 0.02), NDN (β = −1.10; SE = 0.47; p = 0.02), SNRPN (β = −0.65; SE = 0.27; p = 0.02), and SGCE/PEG10 (β = −2.5; SE = 1.01; p = 0.01) DMRs. Our data further suggest a slight increase in DNA methylation at the MEG3-IG DMR (β = +1.22; SE = 0.59; p = 0.04) and H19 DMR (β = +1.37; SE = 0.62; p = 0.03) in sperm of overweight/obese men. Our data support that male overweight/obesity status is traceable in the sperm epigenome. Further research is needed to understand the effect of such changes and the point of origin of DNA methylation differences between lean and overweight/obese men. Together with our earlier reports on paternal obesity and epigenetic shifts in the offspring, our studies set the groundwork for future studies investigating male gametic methylation aberrations due to paternal lifestyle factors such as obesity.

152 citations

Journal ArticleDOI
TL;DR: In this paper, the authors combined data from 14 U.S. epidemiologic studies for which their laboratory group previously assessed exposure to two commonly used organophosphate compounds, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP).
Abstract: During the past decade, use of organophosphate compounds as flame retardants and plasticizers has increased. Numerous studies investigating biomarkers (i.e., urinary metabolites) demonstrate ubiquitous human exposure and suggest that human exposure may be increasing. To formally assess temporal trends, we combined data from 14 U.S. epidemiologic studies for which our laboratory group previously assessed exposure to two commonly used organophosphate compounds, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP). Using individual-level data and samples collected between 2002 and 2015, we assessed temporal and seasonal trends in urinary bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP), the metabolites of TDCIPP and TPHP, respectively. Data suggest that BDCIPP concentrations have increased dramatically since 2002. Samples collected in 2014 and 2015 had BDCIPP concentrations that were more than 15 times higher than those collected in 2002 and 2003 (10β = 16....

135 citations


Cited by
More filters
11 Feb 2010
TL;DR: The American Community Survey (ACS) as discussed by the authors has been conducted on an ongoing basis for the entire country since 2005 and has been shown to be more accurate than the traditional decennial census.
Abstract: Historically, most demographic data for states and substate areas were collected from the long version of the decennial census questionnaire. A “snapshot” of the characteristics of the population on the April 1 census date was available once every 10 years. The long form of the decennial census has been replaced by the American Community Survey (ACS) that has been conducted on an ongoing basis for the entire country since 2005. Instead of a snapshot in which all of the data are gathered at one time, the ACS aggregates data collected over time, making the results more difficult to interpret. However, the ACS data are updated annually.

691 citations

Journal ArticleDOI
08 Feb 2017-BMJ
TL;DR: Increased prepregnancy maternal insulin resistance and accompanying hyperinsulinemia, inflammation, and oxidative stress seem to contribute to early placental and fetal dysfunction in obese women.
Abstract: Obesity is the most common medical condition in women of reproductive age. Obesity during pregnancy has short term and long term adverse consequences for both mother and child. Obesity causes problems with infertility, and in early gestation it causes spontaneous pregnancy loss and congenital anomalies. Metabolically, obese women have increased insulin resistance in early pregnancy, which becomes manifest clinically in late gestation as glucose intolerance and fetal overgrowth. At term, the risk of cesarean delivery and wound complications is increased. Postpartum, obese women have an increased risk of venous thromboembolism, depression, and difficulty with breast feeding. Because 50-60% of overweight or obese women gain more than recommended by Institute of Medicine gestational weight guidelines, postpartum weight retention increases future cardiometabolic risks and prepregnancy obesity in subsequent pregnancies. Neonates of obese women have increased body fat at birth, which increases the risk of childhood obesity. Although there is no unifying mechanism responsible for the adverse perinatal outcomes associated with maternal obesity, on the basis of the available data, increased prepregnancy maternal insulin resistance and accompanying hyperinsulinemia, inflammation, and oxidative stress seem to contribute to early placental and fetal dysfunction. We will review the pathophysiology underlying these data and try to shed light on the specific underlying mechanisms.

669 citations

Journal ArticleDOI
TL;DR: Several risk factors during the first 1,000 days were consistently associated with later childhood obesity, and can inform future research and policy priorities and intervention efforts to prevent childhood obesity.

624 citations

Journal ArticleDOI
01 Jun 2013-Gut
TL;DR: In this paper, the authors found that obesity is associated with a 30-70% increased risk of colon cancer in men, whereas the association is less consistent in women, although the risk appears lower.
Abstract: Excess body weight, as defined by the body mass index (BMI), has been associated with several diseases and includes subjects who are overweight (BMI≥25–29.9 kg/m2) or obese (BMI≥30 kg/m2). Overweight and obesity constitute the fifth leading risk for overall mortality, accounting for at least 2.8 million adult deaths each year. In addition around 11% of colorectal cancer (CRC) cases have been attributed to overweight and obesity in Europe. Epidemiological data suggest that obesity is associated with a 30–70% increased risk of colon cancer in men, whereas the association is less consistent in women. Similar trends exist for colorectal adenoma, although the risk appears lower. Visceral fat, or abdominal obesity, seems to be of greater concern than subcutaneous fat obesity, and any 1 kg/m2 increase in BMI confers additional risk (HR 1.03). Obesity might be associated with worse cancer outcomes, such as recurrence of the primary cancer or mortality. Several factors, including reduced sensitivity to antiangiogenic-therapeutic regimens, might explain these differences. Except for wound infection, obesity has no significant impact on surgical procedures. The underlying mechanisms linking obesity to CRC are still a matter of debate, but metabolic syndrome, insulin resistance and modifications in levels of adipocytokines seem to be of great importance. Other biological factors such as the gut microbita or bile acids are emerging. Many questions still remain unanswered: should preventive strategies specifically target obese patients? Is the risk of cancer great enough to propose prophylactic bariatric surgery in certain patients with obesity?

534 citations