scispace - formally typeset
Search or ask a question
Author

Aden Lam

Bio: Aden Lam is an academic researcher from University College London. The author has contributed to research in topics: Physics & Rotational–vibrational spectroscopy. The author has an hindex of 1, co-authored 1 publications receiving 358 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The ExoMol database as mentioned in this paper provides extensive line lists of molecular transitions which are valid over extended temperature ranges, including lifetimes of individual states, temperature-dependent cooling functions, Lande g-factors, partition functions, cross sections, k-coefficients and transition dipoles with phase relations.

421 citations

Journal ArticleDOI
TL;DR: In this article , the authors report on the creation of bosonic NaCs molecules in their absolute rovibrational ground state via stimulated Raman adiabatic passage and demonstrate comprehensive quantum state control by preparing the molecules in a specific electronic, vibrational, rotational, and hyperfine state.
Abstract: We report on the creation of bosonic NaCs molecules in their absolute rovibrational ground state via stimulated Raman adiabatic passage. We create ultracold gases with up to 22 000 dipolar NaCs molecules at a temperature of 300(50) nK and a peak density of 1.0(4)×10^{12} cm^{-3}. We demonstrate comprehensive quantum state control by preparing the molecules in a specific electronic, vibrational, rotational, and hyperfine state. We measure the ground state ac polarizability at 1064 nm along with the two-body loss rate, which we find to be universal. Employing the tunability and strength of the permanent electric dipole moment of NaCs, we induce dipole moments of up to 2.6 D at a dc electric field of 2.1(2) kV/cm and demonstrate strong microwave coupling between the two lowest rotational states with a Rabi frequency of 2π×45 MHz. A large electric dipole moment, accessible at relatively small electric fields, makes ultracold gases of NaCs molecules well suited for the exploration of strongly interacting phases of dipolar quantum matter.

9 citations

DOI
TL;DR: In this article , the authors reported the creation of ultracold gases of bosonic Feshbach molecules of NaCs using bound state spectroscopy, in conjunction with a coupled-channel calculation.
Abstract: We report on the creation of ultracold gases of bosonic Feshbach molecules of NaCs. The molecules are associated from overlapping gases of Na and Cs using a Feshbach resonance at 864.12(5)G. We characterize the Feshbach resonance using bound state spectroscopy, in conjunction with a coupled-channel calculation. By varying the temperature and atom numbers of the initial atomic mixtures, we demonstrate the association of NaCs gases over a wide dynamic range of molecule numbers and temperatures, reaching 70 nK for our coldest systems and a phase-space density (PSD) near 0.1. This is an important stepping-stone for the creation of degenerate gases of strongly dipolar NaCs molecules in their absolute ground state.

4 citations

Journal ArticleDOI
TL;DR: In this paper , a two-photon pathway for the transfer of NaCs molecules to their rovibrational ground state was proposed, which achieved an efficiency of up to 88(4)%.
Abstract: We present a study of two-photon pathways for the transfer of NaCs molecules to their rovibrational ground state. Starting from NaCs Feshbach molecules, we perform bound-bound excited state spectroscopy in the wavelength range from 900 nm to 940 nm, covering more than 30 vibrational states of the c3Σ+ , b3Π , and B1Π electronic states. Analyzing the rotational substructure, we identify the highly mixed c3Σ1+ |v=22⟩∼b3Π1 |v=54⟩ state as an efficient bridge for stimulated Raman adiabatic passage. We demonstrate transfer into the NaCs ground state with an efficiency of up to 88(4)%. Highly efficient transfer is critical for the realization of many-body quantum phases of strongly dipolar NaCs molecules and high fidelity detection of single molecules, for example, in spin physics experiments in optical lattices and quantum information experiments in optical tweezer arrays.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The HITRAN database is a compilation of molecular spectroscopic parameters as discussed by the authors , which is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres).
Abstract: The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition.

393 citations

Journal ArticleDOI
Giovanna Tinetti1, Pierre Drossart, Paul Eccleston2, Paul Hartogh3  +240 moreInstitutions (45)
TL;DR: The ARIEL mission as mentioned in this paper was designed to observe a large number of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical.
Abstract: Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.

298 citations

Journal ArticleDOI
TL;DR: In this article, a line list for H216O is presented, which includes transitions between rotational-vibrational energy levels up to 41 000 cm-1 and rotational angular momentum J up to 72.
Abstract: A new line list for H216O is presented. This line list, which is called POKAZATEL, includes transitions between rotational-vibrational energy levels up to 41 000 cm-1and is the most complete to date. The potential energy surface (PES) used for producing the line list was obtained by fitting a high-quality ab initio PES to experimental energy levels with energies of 41 000 cm-1and for rotational excitations up to J = 5. The final line list comprises all energy levels up to 41 000 cm-1and rotational angular momentum J up to 72. An accurate ab initio dipole moment surface was used for the calculation of line intensities and reproduces high-precision experimental intensity data with an accuracy close to 1 per cent. The final line list uses empirical energy levels, whenever they are available, to ensure that line positions are reproduced as accurately as possible. The POKAZATEL line list contains over 5 billion transitions and is available from the ExoMol website (www.exomol.com) and the CDS data base.

287 citations

Journal ArticleDOI
02 May 2018-Nature
TL;DR: A detection of helium absorption at 10,833 Å on the exoplanet WASP-107b reveals that its atmosphere is extended and eroding, and demonstrates a new way to study upper exoplanetary atmospheres.
Abstract: Helium is the second-most abundant element in the Universe after hydrogen and is one of the main constituents of gas-giant planets in our Solar System. Early theoretical models predicted helium to be among the most readily detectable species in the atmospheres of exoplanets, especially in extended and escaping atmospheres 1 . Searches for helium, however, have hitherto been unsuccessful 2 . Here we report observations of helium on an exoplanet, at a confidence level of 4.5 standard deviations. We measured the near-infrared transmission spectrum of the warm gas giant 3 WASP-107b and identified the narrow absorption feature of excited metastable helium at 10,833 angstroms. The amplitude of the feature, in transit depth, is 0.049 ± 0.011 per cent in a bandpass of 98 angstroms, which is more than five times greater than what could be caused by nominal stellar chromospheric activity. This large absorption signal suggests that WASP-107b has an extended atmosphere that is eroding at a total rate of 1010 to 3 × 1011 grams per second (0.1–4 per cent of its total mass per billion years), and may have a comet-like tail of gas shaped by radiation pressure.

259 citations