scispace - formally typeset
Search or ask a question
Author

Aditya Khosla

Bio: Aditya Khosla is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Object detection & Cognitive neuroscience of visual object recognition. The author has an hindex of 39, co-authored 61 publications receiving 50417 citations. Previous affiliations of Aditya Khosla include Stanford University & Open University of Catalonia.


Papers
More filters
Proceedings ArticleDOI
TL;DR: In this article, the authors used the VOEventNet framework to automatically classify transient events, using the new measurements, combined with archival data (previous and multi-wavelength measurements), and contextual information (e.g., Galactic or ecliptic latitude, presence of a possible host galaxy nearby, etc.).
Abstract: Exploration of time domain is now a vibrant area of research in astronomy, driven by the advent of digital synoptic sky surveys. While panoramic surveys can detect variable or transient events, typically some follow-up observations are needed; for short-lived phenomena, a rapid response is essential. Ability to automatically classify and prioritize transient events for follow-up studies becomes critical as the data rates increase. We have been developing such methods using the data streams from the Palomar-Quest survey, the Catalina Sky Survey and others, using the VOEventNet framework. The goal is to automatically classify transient events, using the new measurements, combined with archival data (previous and multi-wavelength measurements), and contextual information (e.g., Galactic or ecliptic latitude, presence of a possible host galaxy nearby, etc.); and to iterate them dynamically as the follow-up data come in (e.g., light curves or colors). We have been investigating Bayesian methodologies for classification, as well as discriminated follow-up to optimize the use of available resources, including Naive Bayesian approach, and the non-parametric Gaussian process regression. We will also be deploying variants of the traditional machine learning techniques such as Neural Nets and Support Vector Machines on datasets of reliably classified transients as they build up.

4 citations

Journal ArticleDOI
TL;DR: The IMpower150 study is a phase 3 study measuring the effect of carboplatin and paclitaxel combined with atezolizumab and/or bevacizumAB in patients with advanced nonsquamous NSCs using a novel four-drug mixture.
Abstract: 3130Background: IMpower150 is a phase 3 study measuring the effect of carboplatin and paclitaxel (CP) combined with atezolizumab (A) and/or bevacizumab (B) in patients with advanced nonsquamous NSC...

2 citations

Dissertation
01 Jan 2017

2 citations

Journal Article
TL;DR: Gupta et al. as discussed by the authors used region classifiers, detectors, and object and scene context to improve indoor scene understanding with RGB-D images from a paired RGB and depth image.
Abstract: Scene understanding is the ability to visually analyze a scene to answer questions such as: What is happening? Why is it happening? What will happen next? What should I do? For example, in the context of driving safety, the vision system would need to recognize nearby people and vehicles, anticipate their motions, infer traffic patterns, and detect road conditions. So far, research has focused on providing complete (e.g., every pixel labeled) or holistic (reasoning about several different scene elements) interpretations, often taking into account scene geometry or 3D spatial relationships. Accordingly, in this issue, several papers offer improvements to image segmentation and labeling through use of region classifiers, detectors, and object and scene context: “Indoor Scene Understanding with RGB-D Images: Bottom-up Segmentation, Object Detection and Semantic Segmentation” (doi:10.1007/s11263-014-0777-6) by Gupta et al. addresses problems of interpreting indoor scenes from a paired RGB and depth image. The method infers whether observed contours are due to depth, normal, or albedo

1 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations