scispace - formally typeset
Search or ask a question
Author

Aditya P. Nilawar

Bio: Aditya P. Nilawar is an academic researcher. The author has contributed to research in topics: Groundwater recharge & Drainage density. The author has an hindex of 1, co-authored 1 publications receiving 71 citations.

Papers
More filters
Journal Article
TL;DR: In this article, a standard methodology is proposed to determine groundwater potential using integration of Remote Sensing and Geographic Information System (RS and GIS) techniques and a composite map is generated using GIS tools.
Abstract: Groundwater is an important resource contributing significantly in total annual supply. However, overexploitation has depleted groundwater availability considerably and also led to land subsidence at some places. Assessing the potential zone of groundwater recharge is extremely important for the protection of water quality and the management of groundwater systems. Groundwater potential zones are demarked with the help of remote sensing and Geographic Information System (GIS) techniques. In this study a standard methodology is proposed to determine groundwater potential using integration of RS & GIS technique. The composite map is generated using GIS tools. The accurate information to obtain the parameters that can be considered for identifying the groundwater potential zone such as geology, slope, drainage density, geomorphic units and lineament density are generated using the satellite data and survey of India (SOI) toposheets of scale 1:50000. It is then integrated with weighted overlay in ArcGIS. Suitable ranks are assigned for each category of these parameters. For the various geomorphic units, weight factors are decided based on their capability to store groundwater. This procedure is repeated for all the other layers and resultant layers are reclassified. The groundwater potential zones are classified into five categories like very poor, poor, moderate, good & excellent. The use of suggested methodology is demonstrated for a selected study area in Parbhani district of Maharashtra. This groundwater potential information will be useful for effective identification of suitable locations for extraction of water.

71 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors evaluated and compared groundwater spring potential maps produced with two different models, namely multivariate adaptive regression spline (MARS) and random forest (RF), using geographic information system (GIS).
Abstract: This study evaluated and compared groundwater spring potential maps produced with two different models—namely multivariate adaptive regression spline (MARS) and random forest (RF)—using geographic information system (GIS). In total, 234 spring locations were identified in the Boujnord, North Khorasan, Iran and a GIS spring inventory map was prepared. Of these, 176 (70 %) locations were employed to produce spring potential maps (training), while the remaining 58 (30 %) cases were used to validate the model. The explanatory variables used to predict spring location were altitude, slope aspect, slope degree, slope length, topographic wetness index (TWI), plan curvature, profile curvature, land use, lithology, distance to rivers, drainage density, distance to faults, and fault density. Furthermore, the spatial relationships between spring occurrence and explanatory variables were performed using a Certainty Factor (CF) model. For validation, area under a receiver operating characteristics (ROC) curves (AUC) was used. The validation results showed that the AUC for calibration is almost identical (0.79) in both models, while for prediction, the MARS model (73.26 %) performed better than RF (70.98 %) model. These results indicate that the MARS and RF models are good estimators of groundwater spring potential in the study area. These groundwater spring potential maps can be applied to groundwater management and groundwater resource exploration.

163 citations

Journal ArticleDOI
TL;DR: In this paper, a hybrid integration approach of Fisher's linear discriminant function with rotation forest (RFLDA) and bagging ensembles was used for groundwater potential assessment at the Ningtiaota area in Shaanxi, China.
Abstract: Groundwater is a vital water source in the rural and urban areas of developing and developed nations. In this study, a novel hybrid integration approach of Fisher’s linear discriminant function (FLDA) with rotation forest (RFLDA) and bagging (BFLDA) ensembles was used for groundwater potential assessment at the Ningtiaota area in Shaanxi, China. A spatial database with 66 groundwater spring locations and 14 groundwater spring contributing factors was prepared; these factors were elevation, aspect, slope, plan and profile curvatures, sediment transport index, stream power index, topographic wetness index, distance to roads and streams, land use, lithology, soil and normalized difference vegetation index. The classifier attribute evaluation method based on the FLDA model was implemented to test the predictive competence of the mentioned contributing factors. The area under curve, confidence interval at 95%, standard error, Friedman test and Wilcoxon signed-rank test were used to compare and validate the success and prediction competence of the three applied models. According to the achieved results, the BFLDA model showed the most prediction competence, followed by the RFLDA and FLDA models, respectively. The resulting groundwater spring potential maps can be used for groundwater development plans and land use planning.

123 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed and verified new artificial intelligence methods for the spatial prediction of groundwater spring potential mapping at the Koohdasht-Nourabad plain, Lorestan province, Iran.
Abstract: . Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding groundwater potential is crucial to ensure its sustainable use. The aim of the current study is to propose and verify new artificial intelligence methods for the spatial prediction of groundwater spring potential mapping at the Koohdasht–Nourabad plain, Lorestan province, Iran. These methods are new hybrids of an adaptive neuro-fuzzy inference system (ANFIS) and five metaheuristic algorithms, namely invasive weed optimization (IWO), differential evolution (DE), firefly algorithm (FA), particle swarm optimization (PSO), and the bees algorithm (BA). A total of 2463 spring locations were identified and collected, and then divided randomly into two subsets: 70 % (1725 locations) were used for training models and the remaining 30 % (738 spring locations) were utilized for evaluating the models. A total of 13 groundwater conditioning factors were prepared for modeling, namely the slope degree, slope aspect, altitude, plan curvature, stream power index (SPI), topographic wetness index (TWI), terrain roughness index (TRI), distance from fault, distance from river, land use/land cover, rainfall, soil order, and lithology. In the next step, the step-wise assessment ratio analysis (SWARA) method was applied to quantify the degree of relevance of these groundwater conditioning factors. The global performance of these derived models was assessed using the area under the curve (AUC). In addition, the Friedman and Wilcoxon signed-rank tests were carried out to check and confirm the best model to use in this study. The result showed that all models have a high prediction performance; however, the ANFIS–DE model has the highest prediction capability (AUC = 0.875), followed by the ANFIS–IWO model, the ANFIS–FA model (0.873), the ANFIS–PSO model (0.865), and the ANFIS–BA model (0.839). The results of this research can be useful for decision makers responsible for the sustainable management of groundwater resources.

112 citations

Journal ArticleDOI
TL;DR: In this article, the authors used logistic regression (LR) and multivariate adaptive regression splines (MARS) to analyze groundwater potential using two different models, and compared the results.
Abstract: This study mapped and analyzed groundwater potential using two different models, logistic regression (LR) and multivariate adaptive regression splines (MARS), and compared the results. A spatial database was constructed for groundwater well data and groundwater influence factors. Groundwater well data with a high potential yield of ≥70 m3/d were extracted, and 859 locations (70%) were used for model training, whereas the other 365 locations (30%) were used for model validation. We analyzed 16 groundwater influence factors including altitude, slope degree, slope aspect, plan curvature, profile curvature, topographic wetness index, stream power index, sediment transport index, distance from drainage, drainage density, lithology, distance from fault, fault density, distance from lineament, lineament density, and land cover. Groundwater potential maps (GPMs) were constructed using LR and MARS models and tested using a receiver operating characteristics curve. Based on this analysis, the area under the curve (AUC) for the success rate curve of GPMs created using the MARS and LR models was 0.867 and 0.838, and the AUC for the prediction rate curve was 0.836 and 0.801, respectively. This implies that the MARS model is useful and effective for groundwater potential analysis in the study area.

85 citations

Journal ArticleDOI
TL;DR: In this paper, two MCDM methods namely Analytical hierarchy process (AHP) and Catastrophe Theory (CT) for the weighted overlay were employed in combination with remote sensing and GIS techniques for the demarcation of groundwater potential zones of the region.

85 citations