scispace - formally typeset
Search or ask a question
Author

Adrian C. Newton

Bio: Adrian C. Newton is an academic researcher from James Hutton Institute. The author has contributed to research in topics: Hordeum vulgare & Biodiversity. The author has an hindex of 74, co-authored 453 publications receiving 21814 citations. Previous affiliations of Adrian C. Newton include Seattle Children's Research Institute & University of Peradeniya.


Papers
More filters
Journal ArticleDOI
01 Sep 2002-Heredity
TL;DR: To assess the extent of genetic variation within and between populations of this species, samples were obtained from throughout the natural range and analysed using random amplified polymorphic DNA (RAPD) and mtDNA RFLPs markers.
Abstract: Pinus chiapensis (Pinaceae) is a large conifer, endemic to central and southern Mexico and north-western Guatemala. In order to assess the extent of genetic variation within and between populations of this species, samples were obtained from throughout the natural range and analysed using random amplified polymorphic DNA (RAPD) and mtDNA RFLPs markers. Probes for the CoxI mitochondrial gene enabled two mitotypes to be observed. Populations from the eastern and western limit of the range of the species were fixed for one mitotype (‘A’), whereas two populations distributed near the centre of the range were fixed for another (‘B’). When the samples were screened with eight 10-mer RAPD primers, a total of 12 polymorphic bands were detected. The proportion of polymorphic bands was unusually low (24.5%) compared with other tree species. AMOVA analysis indicated that a significant proportion of the variation (P < 0.002) was distributed between populations; the extent of population differentiation detected (Φst = 0.226; GST = 0.194) was exceptionally high for a pine species. Pair-wise comparison of Φst values derived from AMOVA indicated that populations were significantly (P < 0.05) different from each other in virtually every case. These results are interpreted in the context of the evolutionary history of the species, and the implications for its in- and ex situ conservation are discussed.

53 citations

Journal ArticleDOI
01 Feb 2011-Oikos
TL;DR: The results suggest that broad metacommunity structure would not be a good landscape-scale indicator for conservation status, and knowledge that metacomunity structure does not change over time could assist in long-term conservation strategy.
Abstract: The metacommunity concept provides important insights into large-scale patterns and dynamics of distributions of interacting species. However, temporal change of metacommunity structure is little studied and has not been previously analysed in the context of biodiversity change. As metacommunity structure is determined by multiple species distributions, it is expected to change as a result of biodiversity loss. To examine this process, we analysed structural change of a southern English woodland metacommunity at two points in time, seven decades apart. During this interval, the metacommunity lost β-diversity through taxonomic homogenization. We performed an ‘elements of metacommunity structure’ (EMS) analysis to examine metacommunity structure, based upon three structural elements: coherence (i.e. gaps in species range along a structuring gradient), spatial turnover (replacements), and species range boundary clumping. We predicted that metacommunity structure would decrease in spatial turnover and thus become more nested over time. We tested for change in individual structural elements with z-scores and examined the role of spatial and environmental variables as potential structuring mechanisms through correlation with EMS ordination axes. Our results demonstrated that the metacommunity had a Clementsian structure that was maintained over time. Despite no change in broad structure, coherence and species range boundary clumping increased. Spatial turnover increased along the first structuring gradient but decreased on the second gradient. We hypothesise that this difference between gradients may reflect the presence of competing processes affecting spatial turnover. The mechanisms of biological structuring involved both environmental and spatial factors at the scale of the individual woodland. Therefore, our results suggest that broad metacommunity structure would not be a good landscape-scale indicator for conservation status. Conversely, knowledge that metacommunity structure does not change over time could assist in long-term conservation strategy because fundamental metacommunity structural processes are resistant to environmental change.

50 citations

Journal ArticleDOI
TL;DR: A number of markers were found to be diagnostic for particular species, which could be of value in determining the status of putative hybrids and the application of RAPDs to the study of genetic variation in mahoganies is discussed.
Abstract: Despite the economic importance of mahoganies (Meliaceae) little is known of the pattern of genetic variation within this family of tropical trees. We describe the application of a polymerase chain reaction (PCR)-based polymorphic DNA assay procedure random amplified polymorphic DNAs (RAPDs) to assess the extent of genetic variation between eight mahogany species from four genera. Pronounced genetic differentiation was found between the species and genera. There was a clear separation of Cedrela odorata from the other species, with 95% of the variable amplification products differing, whereas Lovoa trichilioides, Khaya spp. and Swietenia spp. were more closely grouped. These results are consistent with the current taxonomic viewpoint. A number of markers were found to be diagnostic for particular species, which could be of value in determining the status of putative hybrids. The application of RAPDs to the study of genetic variation in mahoganies is discussed in the context of developing genetic conservation and improvement strategies for these species.

49 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI

7,335 citations

Book
24 Nov 2003
TL;DR: The Millennium Ecosystem Assessment (MEA) as discussed by the authors is a conceptual framework for analysis and decision-making of ecosystems and human well-being that was developed through interactions among the experts involved in the MA as well as stakeholders who will use its findings.
Abstract: This first report of the Millennium Ecosystem Assessment describes the conceptual framework that is being used in the MA. It is not a formal assessment of the literature, but rather a scientifically informed presentation of the choices made by the assessment team in structuring the analysis and framing the issues. The conceptual framework elaborated in this report describes the approach and assumptions that will underlie the analysis conducted in the Millennium Ecosystem Assessment. The framework was developed through interactions among the experts involved in the MA as well as stakeholders who will use its findings. It represents one means of examining the linkages between ecosystems and human well-being that is both scientifically credible and relevant to decision-makers. This framework for analysis and decision-making should be of use to a wide array of individuals and institutions in government, the private sector, and civil society that seek to incorporate considerations of ecosystem services in their assessments, plans, and actions.

2,427 citations