scispace - formally typeset
Search or ask a question
Author

Adrian C. Ottewill

Bio: Adrian C. Ottewill is an academic researcher from University College Dublin. The author has contributed to research in topics: Schwarzschild radius & Gravitational wave. The author has an hindex of 35, co-authored 125 publications receiving 4218 citations. Previous affiliations of Adrian C. Ottewill include University of Oxford & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors analyse the behavior of homogeneous and isotropic solutions to a gravity theory that arises from the variation of an arbitrary analytic function of the space-time scalar curvature.
Abstract: The authors analyse the behaviour of homogeneous and isotropic solutions to a gravity theory that arises from the variation of an arbitrary analytic function of the space-time scalar curvature. Such a theory generalises Einstein's general relativity wherein this function is linear in the curvature. They prove conditions for the existence and stability of the general relativistic de Sitter and Friedmann solutions within the general theory, prove necessary and sufficient conditions for the existence of cosmological singularities and particle horizons and analyse the asymptotic behaviour of ever-expanding Universe models. The conditions under which Minkowski space-time and Schwarzschild space-time are stable is investigated and their instability, together with the pathological behaviour of certain cosmological models, traced back to the non-minimality of the stationary action giving rise to the field equations. The significance of these results for quantum theories of gravity and the 'inflationary' model of the early Universe is discussed.

525 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, Rana X. Adhikari2, A. Ageev3  +420 moreInstitutions (57)
TL;DR: For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis.
Abstract: For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.

268 citations

Journal ArticleDOI
B. P. Abbott1, R. Abbott1, Rana X. Adhikari2, A. Ageev3  +373 moreInstitutions (34)
TL;DR: In this article, a model emission mechanism is used to interpret the limits as a constraint on the pulsar's equatorial ellipticity, and two independent analysis methods are used and are demonstrated in two independent methods: a frequency domain method and a time domain method.
Abstract: Data collected by the GEO 600 and LIGO interferometric gravitational wave detectors during their first observational science run were searched for continuous gravitational waves from the pulsar J1939+2134 at twice its rotation frequency. Two independent analysis methods were used and are demonstrated in this paper: a frequency domain method and a time domain method. Both achieve consistent null results, placing new upper limits on the strength of the pulsar’s gravitational wave emission. A model emission mechanism is used to interpret the limits as a constraint on the pulsar’s equatorial ellipticity.

172 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, Rana X. Adhikari2, A. Ageev3  +220 moreInstitutions (30)
TL;DR: In this paper, the authors report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds using data taken by two of the three LIGO interferometers.
Abstract: We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<1.7x10^(2) per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1-3 M☉.

169 citations

Journal ArticleDOI
B. P. Abbott1, R. Abbott1, Rana X. Adhikari2, A. Ageev3  +404 moreInstitutions (33)
TL;DR: The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10(-24), which translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10(-5) for the four closest pulsars.
Abstract: We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10^(-24). These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10^(-5) for the four closest pulsars.

146 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the most important aspects of the different classes of modified gravity theories, including higher-order curvature invariants and metric affine.
Abstract: Modified gravity theories have received increased attention lately due to combined motivation coming from high-energy physics, cosmology, and astrophysics. Among numerous alternatives to Einstein's theory of gravity, theories that include higher-order curvature invariants, and specifically the particular class of $f(R)$ theories, have a long history. In the last five years there has been a new stimulus for their study, leading to a number of interesting results. Here $f(R)$ theories of gravity are reviewed in an attempt to comprehensively present their most important aspects and cover the largest possible portion of the relevant literature. All known formalisms are presented---metric, Palatini, and metric affine---and the following topics are discussed: motivation; actions, field equations, and theoretical aspects; equivalence with other theories; cosmological aspects and constraints; viability criteria; and astrophysical applications.

4,027 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of recent work on modified theories of gravity and their cosmological consequences can be found in this article, where the authors provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a selfcontained, comprehensive and up-to-date introduction to the subject as a whole.

3,674 citations