scispace - formally typeset
Search or ask a question
Author

Adrian Chajec

Bio: Adrian Chajec is an academic researcher from Wrocław University of Technology. The author has contributed to research in topics: Cement & Materials science. The author has an hindex of 3, co-authored 8 publications receiving 20 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compared the performance of fly ash and granite powder for the sustainable production of air-cured concrete mortars and concluded that the use of granite powder and fly ash can significantly reduce the amount of this material deposited in landfills.
Abstract: The partial replacement of cement in concrete with the addition of granite powder and fly ash can help to reduce the carbon dioxide (CO2) emissions into the atmosphere associated with cement production. The aim of the article is to compare the performance of granite powder and fly ash for the sustainable production of air-cured cementitious mortars. The morphological, chemical, and granulometric properties of these additives were first compared with the properties of cement. Afterward, a series of mortars modified with the addition of granite powder and fly ash was made. The properties of the fresh mixes and the mechanical properties of the hardened composites were then tested. Finally, based on the obtained results, a cost analysis of the profitability of modifying cementitious composites with granite powder or fly ash was investigated. The obtained results allow similarities and differences between granite powder and fly ash in relation to cement to be shown. To conclude, it should be stated that both of these materials can successfully be used for the sustainable production of air-cured cementitious composites. This conclusion has a significant impact on the possibility of improving the natural environment by reducing the amount of cement production. More sustainable production of cement-based materials could enable CO2 emissions to be decreased. The use of granite powder for the production of cementitious mortars can significantly reduce the amount of this material deposited in landfills.

33 citations

Journal ArticleDOI
TL;DR: In this paper, a comparative analysis of the impact of the addition of steel and polypropylene fibers on the properties of the concrete mixes and hardened concrete used in the concrete floor industry is presented.
Abstract: The article presents a comparative analysis of the impact of the addition of steel and polypropylene fibers on the properties of the concrete mixes and hardened concrete used in the concrete floor industry. The behavior of concrete intended for floors is different from conventional structural concrete because it is formed horizontally; until now, the effect of steel and polypropylene fibers on the properties of concrete formed horizontally has not yet been fully understood. Therefore, the aim of this article is to examine this issue and compare the behavior of concrete modified with steel and polypropylene fibers in concrete that is formed horizontally. The following properties of fresh concrete mixes were analyzed: consistency, the content of air-voids, and bulk density. Consequently, the following properties of hardened concrete were analyzed: compressive strength, bending tensile strength, and brittleness. It was confirmed that steel and polypropylene fibers have a different type of effect on the properties of fresh concrete mixes and hardened concrete. Finally, a combined economic and mechanical analysis was performed.

12 citations

Journal ArticleDOI
TL;DR: In this article , the effect of the content of silica fume (SF) and the source of fly ash (FA) on the washout resistance of high-volume fly ash concrete (HVFAC) mixes was investigated.

9 citations

Journal ArticleDOI
TL;DR: In this article , a machine learning model for the precise manufacturing of green cementitious composites modified with granite powder sourced from quarry waste was designed, in which decision tree, random forest and AdaBoost ensemble models were used and compared.
Abstract: Abstract In this study, a machine learning model for the precise manufacturing of green cementitious composites modified with granite powder sourced from quarry waste was designed. For this purpose, decision tree, random forest and AdaBoost ensemble models were used and compared. A database was created containing 216 sets of data based on an experimental study. The database consists of parameters such as the percentage of cement substituted with granite powder, time of testing and curing conditions. It was shown that this method for designing green cementitious composite mixes, in terms of predicting compressive strength using ensemble models and only three input parameters, can be more accurate and much more precise than the conventional approach. Moreover, to the best of the authors' knowledge, artificial intelligence has been one of the most effective and precise methods used in the design and manufacturing industry in recent decades. The simplicity of this method makes it more suitable for construction practice due to the ease of evaluating the input variables. As the push towards decreasing carbon emissions increases, a method for designing green cementitious composites without producing waste that is more precise than traditional tests performed in a laboratory is essential.

7 citations

Journal ArticleDOI
TL;DR: In this paper, the importance of the curing conditions that are typical for concrete overlays on the physical, chemical, mechanical, and microstructural properties of siliceous fly ash-modified mortars was investigated.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This study includes the collection of data from the experimental work and the application of ML techniques to predict the CS of concrete containing fly ash, and shows high accuracy towards the prediction of outcome as indicated by its high coefficient correlation (R2) value.

103 citations

Journal ArticleDOI
28 Jul 2021-Energies
TL;DR: In this paper, the authors presented studies of plain concretes prepared based on a quaternary binder containing various percentages of selected supplementary cementitious materials (SCMs) and the possibilities of nanotechnology in concrete technology were also used.
Abstract: The article presents studies of plain concretes prepared based on a quaternary binder containing various percentages of selected supplementary cementitious materials (SCMs). The possibilities of nanotechnology in concrete technology were also used. An additional important environmental goal of the proposed solution was to create the possibility of reducing CO2 emissions and the carbon footprint generated during the production of ordinary Portland cement (OPC). As the main substitute for the OPC, siliceous fly ash (FA) was used. Moreover, silica fume (SF) and nanosilica (nS) were also used. During examinations, the main mechanical properties of composites, i.e., compressive strength (fcm) and splitting tensile strength (fctm), were assessed. The microstructure of these materials was also analyzed using a scanning electron microscope (SEM). In addition to the experimental research, simulations of the possible reduction of CO2 emissions to the atmosphere, as a result of the proposed solutions, were also carried out. It was found that the quaternary concrete is characterized by a well-developed structure and has high values of mechanical parameters. Furthermore, the use of green concrete based on quaternary binders enables a significant reduction in CO2 emissions. Therefore quaternary green concrete containing SCMs could be a useful alternative to plain concretes covering both the technical and environmental aspects. The present study indicates that quaternary binders can perform better than OPC as far as mechanical properties and microstructures are concerned. Therefore they can be used during the production of durable concretes used to perform structures in traditional and industrial construction.

61 citations

Journal ArticleDOI
TL;DR: The use of fly ash in cement composites adversely affects its mechanical properties during the first days of mixture curing as discussed by the authors, and the authors conducted a series of studies for cement pastes modified with the addition of FA and the CSH nano-admixture.
Abstract: The use of fly ash in cement composites adversely affects its mechanical properties during the first days of mixture curing. Modern technology, in the form of an admixture containing the hydrated calcium silicates, allows to accelerate the hardening and binding process of concrete. In this paper, studies on the influence of the admixture on properties of concretes with the ordinary Portland cements (OPC) containing the addition of siliceous fly ash (FA) have been carried out. As part of the experimental research, the authors conducted a series of studies for cement pastes modified with the addition of FA and the CSH nano-admixture (NA). In order to compare the mixtures, the following tests of cement pastes were carried out: the compressive and flexural strength, heat of hydration, SEM and rheological shrinkage. The mechanical parameters were tested after 4, 8, 12 and 24 h. The hydration heat test and microstructure analysis were carried out during the first 24 h of the concrete curing. All tests were carried out on the standard samples. On the basis of the heat of hydration test, much higher hydration heat was found in mixtures modified with the NA. During the shrinkage test, a positive effect of the NA was observed-the shrinkage during the first 28 days of mixture curing was lower than in the reference samples. The application of the CSH nano-admixture to cement pastes with the addition of FA has brought positive effects. Apart from a significant increase in strength in the first 24 h of mixture curing, a reduction in the rheological shrinkage was observed. The admixture can be successfully used in the ash concretes, in which a higher early strength is required.

52 citations

Journal ArticleDOI
TL;DR: The aim of this paper was to briefly describe the recently used non-destructive and semi-destructives testing methods and the parameters useful for characterizing the adhesion between overlays and substrates in concrete floors, as well as the methods useful to characterize the functional properties of the overlays.
Abstract: Non-destructive testing (NDT) and semi-destructive testing (SDT) have recently been more frequently used for the evaluation and condition assessment of concrete floors in various types of buildings. The subject of the article is to briefly introduce the reader to the problem of adhesion between overlays and substrates in concrete floors and to illustrate the current state of knowledge on the subject. The aim of this paper was to briefly describe the recently used non-destructive and semi-destructive testing methods and the parameters useful for characterizing the adhesion between overlays and substrates in concrete floors, as well as the methods useful to characterize the functional properties of the overlays. A recent literature survey, related to the adhesion between the overlays and substrates in concrete floors, is thus shown. Special emphasis was placed on the critical review of the current research results. Based on the analysis of the literature review, research gaps have been presented in order to highlight future research directions.

36 citations

Journal ArticleDOI
31 Dec 2022-Energies
TL;DR: In this article , the authors investigated the effects of coal fly ash (CFA) on the mechanical parameters and microstructure of CFA cement concretes and found that the combined usage of nS and CFA has synergistic and positive effects on improving mechanical parameters.
Abstract: Disposal of the coal fly ash (CFA) generated from thermal power plants in huge quantities is one of the major concerns for the industry, as well as the natural environment. On the other hand, CFA can be used within a certain percentage range in the cement concrete mix as a replacement for cement. Nanomaterials can also be used to improve the properties of concrete. Therefore, this study investigated the effects of nanosilica (nS) on the mechanical parameters and microstructure of CFA cement concretes. This study utilized an nS content of 5%, along with three CFA contents, i.e., of 0, 15, and 25% by volume. Mechanical property tests and a thorough overview of changes in the structure of modified concrete were carried out to study the effect of the CFA content on the analyzed parameters of concrete containing nS. This study had the goal of elucidating the reinforcing mechanisms of CFA concrete by nS and providing design guidance for the practical engineering applications of CFA-nS composites. Based on the conducted studies, it was found that the combined usage of nS and CFA has synergistic and positive effects on improving mechanical parameters and microstructure in such concretes. The combined strengthening of a cement matrix by nS and CFA can fill the pores and microcracks in concrete composites and effectively improve the mechanical properties and microstructure of such materials. In this study, the optimal improvement was achieved when the concentration of additions was 5% nS and 15% CFA. The 28-day compressive strength and splitting tensile strength were increased by 37.68 and 36.21%, respectively, in comparison to control concrete. Tailored blended cements composed of nS and CFA content (up to 30% replacement level) can significantly improve the parameters of concrete composites, as well as reduce the carbon footprint of cement-based materials—constituting a step toward the production of eco-friendly concretes.

35 citations