scispace - formally typeset
Search or ask a question
Author

Adrian Dinescu

Bio: Adrian Dinescu is an academic researcher. The author has contributed to research in topics: Graphene & Materials science. The author has an hindex of 21, co-authored 189 publications receiving 1701 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, multiphase composite materials filled with multiwall carbon nanotubes (MWCNTs), short nickel-coated carbon fibers and millimeter-long carbon fibers with various weight fractions and compositions are developed and used for the design of wide-band thin radar-absorbing screens.

155 citations

Journal ArticleDOI
TL;DR: In this paper, an alginate/k-carrageenan composite film cross-linked with CaCl2 that could be used in biomedical applications is presented, where the influence of the alginates/carragesenan ratio on the composite films properties was studied in order to establish the optimal composition of the films.

135 citations

Journal ArticleDOI
TL;DR: In this paper, the laser-induced periodic surface structures (LIPSS) are obtained on metallic films (Cr, Ti, and W) by femtosecond laser pulses working at both fundamental (775 nm) and frequency doubled (387 nm) wavelengths in air and liquid environments.

87 citations

Journal ArticleDOI
01 Nov 2011-Carbon
TL;DR: In this article, the effect of three different carbon-based nano and microfillers on the electromagnetic performance of polymeric composites was examined through the measurement of the effective complex permittivity in the frequency range from 8.2 to 18.GHz.

84 citations

Journal ArticleDOI
TL;DR: In this paper, the experimental and modeling results of a microwave slot antenna in a coplanar configuration based on graphene are presented, where the antennas are fabricated on a 4'in. high-resistivity Si wafer, with a ∼300'nm SiO2 layer grown through thermal oxidation.
Abstract: The paper presents the experimental and modeling results of a microwave slot antenna in a coplanar configuration based on graphene. The antennas are fabricated on a 4 in. high-resistivity Si wafer, with a ∼300 nm SiO2 layer grown through thermal oxidation. A CVD grown graphene layer is transferred on the SiO2. The paper shows that the reflection parameter of the antenna can be tuned by a DC voltage. 2D radiation patterns at various frequencies in the X band (8–12 GHz) are then presented using as antenna backside a microwave absorbent and a metalized surface. Although the radiation efficiency is lower than a metallic antenna, the graphene antenna is a wideband antenna while the metal antennas with the same geometry and working at the same frequencies are narrowband.

68 citations


Cited by
More filters
Journal ArticleDOI
09 Sep 2016-Science
TL;DR: The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
Abstract: Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.

3,251 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: In this paper, the dominant electronic and chemical mechanisms that influence the performance of metal-oxide-based resistive-type gas sensors are discussed, including p-n and n-n potential barrier manipulation, n-p-n response type inversions, spillover effects, synergistic catalytic behavior, and microstructure enhancement.
Abstract: Metal oxide-based resistive-type gas sensors are solid-state devices which are widely used in a number of applications from health and safety to energy efficiency and emission control. Nanomaterials such as nanowires, nanorods, and nanoparticles have dominated the research focus in this field due to their large number of surface sites facilitating surface reactions. Previous studies have shown that incorporating two or more metal oxides to form a heterojunction interface can have drastic effects on gas sensor performance, especially the selectivity. Recently, these effects have been amplified by designing heterojunctions on the nano-scale. These designs have evolved from mixed commercial powders and bi-layer films to finely-tuned core–shell and hierarchical brush-like nanocomposites. This review details the various morphological classes currently available for nanostructured metal-oxide based heterojunctions and then presents the dominant electronic and chemical mechanisms that influence the performance of these materials as resistive-type gas sensors. Mechanisms explored include p–n and n–n potential barrier manipulation, n–p–n response type inversions, spill-over effects, synergistic catalytic behavior, and microstructure enhancement. Tables are presented summarizing these works specifically for SnO2, ZnO, TiO2, In2O3, Fe2O3, MoO3, Co3O4, and CdO-based nanocomposites. Recent developments are highlighted and likely future trends are explored.

1,392 citations

Journal ArticleDOI
TL;DR: This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including ant ifouling strategies, preparation techniques and practical applications.
Abstract: One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.

904 citations