scispace - formally typeset
Search or ask a question
Author

Adrian Wing-Keung Law

Bio: Adrian Wing-Keung Law is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Turbulence & Jet (fluid). The author has an hindex of 31, co-authored 185 publications receiving 3927 citations. Previous affiliations of Adrian Wing-Keung Law include Bechtel & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: 3D hollow hybrid composites with ultrafine cobalt sulfide nanoparticles uniformly embedded within the well-graphitized porous carbon polyhedra/carbon nanotubes framework are rationally fabricated using a green and one-step method involving the simultaneous pyrolysis and sulfidation of ZIF-67.
Abstract: 3D hollow hybrid composites with ultrafine cobalt sulfide nanoparticles uniformly embedded within the well-graphitized porous carbon polyhedra/carbon nanotubes framework are rationally fabricated using a green and one-step method involving the simultaneous pyrolysis and sulfidation of ZIF-67. Because of the synergistic coupling effects favored by the unique nanohybridization, these composites exhibit high specific capacity, excellent cycle stability, and superior rate capability when evaluated as electrodes in lithium-ion batteries.

590 citations

Journal ArticleDOI
TL;DR: In this paper, a second-order integral model for a round turbulent buoyant jet is proposed based on new experimental data on turbulent mass and momentum transport, and the model employs the widely used entrainment assumption with the entrainments coefficient taken to be a function of the local Richardson number.
Abstract: The development of a second-order integral model for a round turbulent buoyant jet is reported based on new experimental data on turbulent mass and momentum transport. The mean and turbulent characteristics of a round vertical buoyant jet covering the full range from jets to plumes were investigated using a recently developed combined digital particle image velocimetry (DPIV) and planar laser-induced fluorescence (PLIF) system. The system couples the two well-known techniques to enable synchronized planar measurements of flow velocities and concentrations in a study area. The experimental results conserved the mass and momentum fluxes introduced at the source accurately with closure errors of less than 5%. The momentum flux contributed by turbulence and streamwise pressure gradient was determined to be about 10% of the local mean momentum flux in both jets and plumes. The turbulent mass flux, on the other hand, was measured to be about 7.6% and 15% of the mean mass flux for jets and plumes respectively. While the velocity spread rate was shown to be independent of the flow regime, the concentration-to-velocity width ratio λ varied from 1.23 to 1.04 during the transition from jet to plume. Based on the experimental results, a refined second-order integral model for buoyant jets that achieves the conservation of total mass and momentum fluxes is proposed. The model employs the widely used entrainment assumption with the entrainment coefficient taken to be a function of the local Richardson number. Improved prediction is achieved by taking into account the variation of turbulent mass and momentum fluxes. The variation of turbulent mass flux is modelled as a function of the local Richardson number. The turbulent momentum flux, on the other hand, is treated as a fixed percentage of the local mean momentum flux. In addition, unlike most existing integral models that assume a constant concentration-to-velocity width ratio, the present model adopts a more accurate approach with the ratio expressed as a function of the local Richardson number. As a result, smooth transition of all relevant mean and turbulent characteristics from jet to plume is predicted, which is in line with the underlying physical processes.

204 citations

Journal ArticleDOI
TL;DR: In this article, a configuration of floating breakwater with asymmetric pneumatic chambers was proposed to increase the amplitude of the oscillating air-pressures inside both chambers over a wide range of wave frequency (thus to improve the performance in wave energy extraction).

197 citations

Journal ArticleDOI
TL;DR: A novel, efficient and green MOFs-templated sulfidation route has been developed to synthesize Cu(1.96)S-C hybrid composites, which exhibit high specific capacitance and good cycling performance in supercapacitors.

144 citations

Journal ArticleDOI
TL;DR: Using molecular dynamics simulations, the interfacial thermal conductance G of an SE/GE bilayer heterostructure is studied and hydrogenation of GE is efficient in enhancing G if an optimum hydrogenation pattern is adopted.
Abstract: van der Waals heterostructures, obtained by stacking layers of isolated two-dimensional atomic crystals like graphene (GE) and silicene (SE), are one of emerging nanomaterials for the development of future multifunctional devices. Thermal transport behaviors at the interface of these heterostructures play a pivotal role in determining their thermal properties and functional performance. Using molecular dynamics simulations, the interfacial thermal conductance G of an SE/GE bilayer heterostructure is studied. Simulations show that G of a pristine SE/GE bilayer at room temperature is 11.74 MW/m2K when heat transfers from GE to SE, and is 9.52 MW/m2K for a reverse heat transfer, showing apparent thermal rectification effects. In addition, G increases monotonically with both the temperature and the interface coupling strength. Furthermore, hydrogenation of GE is efficient in enhancing G if an optimum hydrogenation pattern is adopted. By changing the hydrogen coverage f, G can be controllably manipulated and m...

123 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Journal ArticleDOI
TL;DR: In this paper, a review of more than 300 publications on membrane bioreactor fouling is presented, and the authors propose updated definitions of key parameters such as critical and sustainable flux, along with standard methods to determine and measure the different fractions of the biomass.

2,113 citations

Journal ArticleDOI
TL;DR: The fouling behaviour, fouling factors and fouling control strategies were discussed, and recent developments in membrane materials including low-cost filters, membrane modification and dynamic membranes were reviewed.

1,708 citations

Journal ArticleDOI
TL;DR: In this paper, the authors address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon and find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of flexible membranes.
Abstract: The stability of two-dimensional (2D) layers and membranes is subject of a long standing theoretical debate. According to the so called Mermin-Wagner theorem, long wavelength fluctuations destroy the long-range order for 2D crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be crumpled. These dangerous fluctuations can, however, be suppressed by anharmonic coupling between bending and stretching modes making that a two-dimensional membrane can exist but should present strong height fluctuations. The discovery of graphene, the first truly 2D crystal and the recent experimental observation of ripples in freely hanging graphene makes these issues especially important. Beside the academic interest, understanding the mechanisms of stability of graphene is crucial for understanding electronic transport in this material that is attracting so much interest for its unusual Dirac spectrum and electronic properties. Here we address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon. We find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of stability of flexible membranes. This unexpected result seems to be due to the multiplicity of chemical bonding in carbon.

1,367 citations