scispace - formally typeset
Search or ask a question
Author

Adriano Camps

Bio: Adriano Camps is an academic researcher from Polytechnic University of Catalonia. The author has contributed to research in topics: GNSS applications & Radiometer. The author has an hindex of 46, co-authored 489 publications receiving 8956 citations. Previous affiliations of Adriano Camps include Polytechnic University of Puerto Rico & University of Melbourne.


Papers
More filters
Journal ArticleDOI
TL;DR: A new remotesensing technique to use reflected GNSS signals for remote-sensing applications is described, some of the interesting results that have been already obtained are discussed, and an overview of current and planned spacecraft missions is given.
Abstract: -In traditional GNSS applications, signals arriving at a receiver's antenna from nearby reflecting surfaces (multipath) interfere with the signals received directly from the satellites which can often result in a reduction of positioning accuracy. About two decades ago researchers produced an idea to use reflected GNSS signals for remote-sensing applications. In this new concept a GNSS transmitter together with a receiver capable of processing GNSS scattered signals of opportunity becomes bistatic radar. By properly processing the scattered signal, this system can be configured either as an altimeter, or a scatterometer allowing us to estimate such characteristics of land or ocean surface as height, roughness, or dielectric properties of the underlying media. From there, using various methods the geophysical parameters can be estimated such as mesoscale ocean topography, ocean surface winds, soil moisture, vegetation, snowpack, and sea ice. Depending on the platform of the GNSS receiver (stationary, airborne, or spaceborne), the capabilities of this technique and specific methods for processing of the reflected signals may vary. In this tutorial, we describe this new remotesensing technique, discuss some of the interesting results that have been already obtained, and give an overview of current and planned spacecraft missions.

395 citations

Journal ArticleDOI
01 May 2010
TL;DR: In this article, an L-band microwave interferometric radiometer with aperture synthesis (MIRAS) is used to generate brightness temperature images, from which both geophysical variables are computed.
Abstract: Soil Moisture and Ocean Salinity, European Space Agency, is the first satellite mission addressing the challenge of measuring sea surface salinity from space It uses an L-band microwave interferometric radiometer with aperture synthesis (MIRAS) that generates brightness temperature images, from which both geophysical variables are computed The retrieval of salinity requires very demanding performances of the instrument in terms of calibration and stability This paper highlights the importance of ocean salinity for the Earth's water cycle and climate; provides a detailed description of the MIRAS instrument, its principles of operation, calibration, and image-reconstruction techniques; and presents the algorithmic approach implemented for the retrieval of salinity from MIRAS observations, as well as the expected accuracy of the obtained results

382 citations

Journal ArticleDOI
TL;DR: Following the SMOS launch, a downscaling strategy for the estimation of soil moisture at high resolution from SMOS using MODIS VIS/IR data has been developed and is validated against in situ soil moisture data from the OZnet soil moisture monitoring network, in South-Eastern Australia.
Abstract: A downscaling approach to improve the spatial resolution of Soil Moisture and Ocean Salinity (SMOS) soil moisture estimates with the use of higher resolution visible/infrared (VIS/IR) satellite data is presented. The algorithm is based on the so-called “universal triangle” concept that relates VIS/IR parameters, such as the Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature (Ts), to the soil moisture status. It combines the accuracy of SMOS observations with the high spatial resolution of VIS/IR satellite data into accurate soil moisture estimates at high spatial resolution. In preparation for the SMOS launch, the algorithm was tested using observations of the UPC Airborne RadIomEter at L-band (ARIEL) over the Soil Moisture Measurement Network of the University of Salamanca (REMEDHUS) in Zamora (Spain), and LANDSAT imagery. Results showed fairly good agreement with ground-based soil moisture measurements and illustrated the strength of the link between VIS/IR satellite data and soil moisture status. Following the SMOS launch, a downscaling strategy for the estimation of soil moisture at high resolution from SMOS using MODIS VIS/IR data has been developed. The method has been applied to some of the first SMOS images acquired during the commissioning phase and is validated against in situ soil moisture data from the OZnet soil moisture monitoring network, in South-Eastern Australia. Results show that the soil moisture variability is effectively captured at 10 and 1 km spatial scales without a significant degradation of the root mean square error.

360 citations

Journal ArticleDOI
TL;DR: The fundamental equation of interferometric aperture synthesis radiometry is revised to include full antenna pattern characterization and receivers' interaction and it is shown that the cross correlation between the output signals of a pair of receivers is a Fourier-like integral of the difference between the scene brightness temperature and the physical temperature of the receivers.
Abstract: The fundamental equation of interferometric aperture synthesis radiometry is revised to include full antenna pattern characterization and receivers' interaction. It is shown that the cross correlation between the output signals of a pair of receivers is a Fourier-like integral of the difference between the scene brightness temperature and the physical temperature of the receivers. The derivation is performed using a thermodynamic approach to account for the effects of mutual coupling between antenna elements. The analysis assumes that the receivers include ferrite isolators so that the noise wave passing from the receiver toward the antenna can be modeled as uncorrelated ambient noise. The effect of wide beamwidth antennas on the polarization basis of the retrieved brightness temperature is also discussed.

290 citations

Journal ArticleDOI
09 Oct 2009
TL;DR: This paper presents a new technique to retrieve soil moisture using global navigation satellite signals reflected over the soil surface using the measurement of the power fluctuations of the signal created by the interference between the direct GPS signal and the one reflected overThe soil surface.
Abstract: This paper presents a new technique to retrieve soil moisture using global navigation satellite signals reflected over the soil surface using the measurement of the power fluctuations of the signal created by the interference between the direct GPS signal and the one reflected over the soil surface. As a function of the elevation angle, power fluctuations at vertical polarization pass through a notch, which is related to the soil moisture content, while horizontal polarization exhibits a very weak dependence. Experimental results of the measurements obtained over a bare soil field are presented and discussed.

208 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
06 May 2010
TL;DR: The Soil Moisture Active Passive mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey to make global measurements of the soil moisture present at the Earth's land surface.
Abstract: The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey SMAP will make global measurements of the soil moisture present at the Earth's land surface and will distinguish frozen from thawed land surfaces Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy, and carbon transfers between the land and the atmosphere The accuracy of numerical models of the atmosphere used in weather prediction and climate projections are critically dependent on the correct characterization of these transfers Soil moisture measurements are also directly applicable to flood assessment and drought monitoring SMAP observations can help monitor these natural hazards, resulting in potentially great economic and social benefits SMAP observations of soil moisture and freeze/thaw timing will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes The SMAP mission concept will utilize L-band radar and radiometer instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and net ecosystem exchange of carbon SMAP is scheduled for launch in the 2014-2015 time frame

2,474 citations

Journal ArticleDOI
12 Apr 2010
TL;DR: The SMOS satellite was launched successfully on November 2, 2009, and will achieve an unprecedented maximum spatial resolution of 50 km at L-band over land (43 km on average over the field of view), providing multiangular dual polarized (or fully polarized) brightness temperatures over the globe.
Abstract: It is now well understood that data on soil moisture and sea surface salinity (SSS) are required to improve meteorological and climate predictions. These two quantities are not yet available globally or with adequate temporal or spatial sampling. It is recognized that a spaceborne L-band radiometer with a suitable antenna is the most promising way of fulfilling this gap. With these scientific objectives and technical solution at the heart of a proposed mission concept the European Space Agency (ESA) selected the Soil Moisture and Ocean Salinity (SMOS) mission as its second Earth Explorer Opportunity Mission. The development of the SMOS mission was led by ESA in collaboration with the Centre National d'Etudes Spatiales (CNES) in France and the Centro para el Desarrollo Tecnologico Industrial (CDTI) in Spain. SMOS carries a single payload, an L-Band 2-D interferometric radiometer operating in the 1400-1427-MHz protected band . The instrument receives the radiation emitted from Earth's surface, which can then be related to the moisture content in the first few centimeters of soil over land, and to salinity in the surface waters of the oceans. SMOS will achieve an unprecedented maximum spatial resolution of 50 km at L-band over land (43 km on average over the field of view), providing multiangular dual polarized (or fully polarized) brightness temperatures over the globe. SMOS has a revisit time of less than 3 days so as to retrieve soil moisture and ocean salinity data, meeting the mission's science objectives. The caveat in relation to its sampling requirements is that SMOS will have a somewhat reduced sensitivity when compared to conventional radiometers. The SMOS satellite was launched successfully on November 2, 2009.

1,553 citations

Journal ArticleDOI
TL;DR: The goal of this paper is to present the main aspects of the baseline mission and describe how soil moisture will be retrieved from SMOS data.
Abstract: Microwave radiometry at low frequencies (L-band: 1.4 GHz, 21 cm) is an established technique for estimating surface soil moisture and sea surface salinity with a suitable sensitivity. However, from space, large antennas (several meters) are required to achieve an adequate spatial resolution at L-band. So as to reduce the problem of putting into orbit a large filled antenna, the possibility of using antenna synthesis methods has been investigated. Such a system, relying on a deployable structure, has now proved to be feasible and has led to the Soil Moisture and Ocean Salinity (SMOS) mission, which is described. The main objective of the SMOS mission is to deliver key variables of the land surfaces (soil moisture fields), and of ocean surfaces (sea surface salinity fields). The SMOS mission is based on a dual polarized L-band radiometer using aperture synthesis (two-dimensional [2D] interferometer) so as to achieve a ground resolution of 50 km at the swath edges coupled with multiangular acquisitions. The radiometer will enable frequent and global coverage of the globe and deliver surface soil moisture fields over land and sea surface salinity over the oceans. The SMOS mission was proposed to the European Space Agency (ESA) in the framework of the Earth Explorer Opportunity Missions. It was selected for a tentative launch in 2005. The goal of this paper is to present the main aspects of the baseline mission and describe how soil moisture will be retrieved from SMOS data.

1,528 citations

Journal Article
J. Walkup1
TL;DR: Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.
Abstract: Course Description This is an advanced course in which we explore the field of Statistical Optics. Topics covered include such subjects as the statistical properties of natural (thermal) and laser light, spatial and temporal coherence, effects of partial coherence on optical imaging instruments, effects on imaging due to randomly inhomogeneous media, and a statistical treatment of the detection of light. Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.

1,364 citations