scispace - formally typeset
Search or ask a question
Author

Adrien Treuille

Other affiliations: University of Washington
Bio: Adrien Treuille is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Rendering (computer graphics) & Precomputation. The author has an hindex of 19, co-authored 24 publications receiving 5341 citations. Previous affiliations of Adrien Treuille include University of Washington.

Papers
More filters
Book ChapterDOI
TL;DR: This chapter describes the requirements for the ROSETTA molecular modeling program's new architecture, justifies the design decisions, sketches out central classes, and highlights a few of the common tasks that the new software can perform.
Abstract: We have recently completed a full re-architecturing of the ROSETTA molecular modeling program, generalizing and expanding its existing functionality. The new architecture enables the rapid prototyping of novel protocols by providing easy-to-use interfaces to powerful tools for molecular modeling. The source code of this rearchitecturing has been released as ROSETTA3 and is freely available for academic use. At the time of its release, it contained 470,000 lines of code. Counting currently unpublished protocols at the time of this writing, the source includes 1,285,000 lines. Its rapid growth is a testament to its ease of use. This chapter describes the requirements for our new architecture, justifies the design decisions, sketches out central classes, and highlights a few of the common tasks that the new software can perform.

1,676 citations

Journal ArticleDOI
05 Aug 2010-Nature
TL;DR: Foldit is described, a multiplayer online game that engages non-scientists in solving hard prediction problems and shows that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues.
Abstract: A natural polypeptide chain can fold into a native protein in microseconds, but predicting such stable three-dimensional structure from any given amino-acid sequence and first physical principles remains a formidable computational challenge. Aiming to recruit human visual and strategic powers to the task, Seth Cooper, David Baker and colleagues turned their 'Rosetta' structure-prediction algorithm into an online multiplayer game called Foldit, in which thousands of non-scientists competed and collaborated to produce a rich set of new algorithms and search strategies for protein structure refinement. The work shows that even computationally complex scientific problems can be effectively crowd-sourced using interactive multiplayer games. Predicting the structure of a folded protein from first principles for any given amino-acid sequence remains a formidable computational challenge. To recruit human abilities to the task, these authors turned their Rosetta structure prediction algorithm into an online multiplayer game in which thousands of non-scientists competed and collaborated to produce new algorithms and search strategies for protein structure refinement. This shows that computationally complex problems can be effectively 'crowd-sourced' through interactive multiplayer games. People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully ‘crowd-sourced’ through games1,2,3, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology4, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.

1,265 citations

Journal ArticleDOI
01 Jul 2006
TL;DR: In this model, a dynamic potential field simultaneously integrates global navigation with moving obstacles such as other people, efficiently solving for the motion of large crowds without the need for explicit collision avoidance.
Abstract: We present a real-time crowd model based on continuum dynamics. In our model, a dynamic potential field simultaneously integrates global navigation with moving obstacles such as other people, efficiently solving for the motion of large crowds without the need for explicit collision avoidance. Simulations created with our system run at interactive rates, demonstrate smooth flow under a variety of conditions, and naturally exhibit emergent phenomena that have been observed in real crowds.

883 citations

Journal ArticleDOI
01 Aug 2004
TL;DR: A novel method for controlling physics-based fluid simulations through gradient-based nonlinear optimization and the first method for the full control of free-surface liquids is introduced.
Abstract: We describe a novel method for controlling physics-based fluid simulations through gradient-based nonlinear optimization. Using a technique known as the adjoint method, derivatives can be computed efficiently, even for large 3D simulations with millions of control parameters. In addition, we introduce the first method for the full control of free-surface liquids. We show how to compute adjoint derivatives through each step of the simulation, including the fast marching algorithm, and describe a new set of control parameters specifically designed for liquids.

316 citations

Proceedings ArticleDOI
01 Jul 2003
TL;DR: A continuous quasi-Newton optimization solves for appropriate "wind" forces to be applied to the underlying velocity field throughout the simulation to greatly speed up the optimization process while avoiding certain local minima.
Abstract: We describe a method for controlling smoke simulations through user-specified keyframes. To achieve the desired behavior, a continuous quasi-Newton optimization solves for appropriate "wind" forces to be applied to the underlying velocity field throughout the simulation. The cornerstone of our approach is a method to efficiently compute exact derivatives through the steps of a fluid simulation. We formulate an objective function corresponding to how well a simulation matches the user's keyframes, and use the derivatives to solve for force parameters that minimize this function. For animations with several keyframes, we present a novel multiple-shooting approach. By splitting large problems into smaller overlapping subproblems, we greatly speed up the optimization process while avoiding certain local minima.

272 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: This work proposes an LSTM model which can learn general human movement and predict their future trajectories and outperforms state-of-the-art methods on some of these datasets.
Abstract: Pedestrians follow different trajectories to avoid obstacles and accommodate fellow pedestrians. Any autonomous vehicle navigating such a scene should be able to foresee the future positions of pedestrians and accordingly adjust its path to avoid collisions. This problem of trajectory prediction can be viewed as a sequence generation task, where we are interested in predicting the future trajectory of people based on their past positions. Following the recent success of Recurrent Neural Network (RNN) models for sequence prediction tasks, we propose an LSTM model which can learn general human movement and predict their future trajectories. This is in contrast to traditional approaches which use hand-crafted functions such as Social forces. We demonstrate the performance of our method on several public datasets. Our model outperforms state-of-the-art methods on some of these datasets. We also analyze the trajectories predicted by our model to demonstrate the motion behaviour learned by our model.

2,587 citations

Proceedings ArticleDOI
17 Jun 2006
TL;DR: This paper first survey multi-view stereo algorithms and compare them qualitatively using a taxonomy that differentiates their key properties, then describes the process for acquiring and calibrating multiview image datasets with high-accuracy ground truth and introduces the evaluation methodology.
Abstract: This paper presents a quantitative comparison of several multi-view stereo reconstruction algorithms. Until now, the lack of suitable calibrated multi-view image datasets with known ground truth (3D shape models) has prevented such direct comparisons. In this paper, we first survey multi-view stereo algorithms and compare them qualitatively using a taxonomy that differentiates their key properties. We then describe our process for acquiring and calibrating multiview image datasets with high-accuracy ground truth and introduce our evaluation methodology. Finally, we present the results of our quantitative comparison of state-of-the-art multi-view stereo reconstruction algorithms on six benchmark datasets. The datasets, evaluation details, and instructions for submitting new models are available online at http://vision.middlebury.edu/mview.

2,556 citations

Book ChapterDOI
TL;DR: This chapter describes the requirements for the ROSETTA molecular modeling program's new architecture, justifies the design decisions, sketches out central classes, and highlights a few of the common tasks that the new software can perform.
Abstract: We have recently completed a full re-architecturing of the ROSETTA molecular modeling program, generalizing and expanding its existing functionality. The new architecture enables the rapid prototyping of novel protocols by providing easy-to-use interfaces to powerful tools for molecular modeling. The source code of this rearchitecturing has been released as ROSETTA3 and is freely available for academic use. At the time of its release, it contained 470,000 lines of code. Counting currently unpublished protocols at the time of this writing, the source includes 1,285,000 lines. Its rapid growth is a testament to its ease of use. This chapter describes the requirements for our new architecture, justifies the design decisions, sketches out central classes, and highlights a few of the common tasks that the new software can perform.

1,676 citations

Proceedings ArticleDOI
20 Jun 2009
TL;DR: A novel method to detect and localize abnormal behaviors in crowd videos using Social Force model and it is shown that the social force approach outperforms similar approaches based on pure optical flow.
Abstract: In this paper we introduce a novel method to detect and localize abnormal behaviors in crowd videos using Social Force model. For this purpose, a grid of particles is placed over the image and it is advected with the space-time average of optical flow. By treating the moving particles as individuals, their interaction forces are estimated using social force model. The interaction force is then mapped into the image plane to obtain Force Flow for every pixel in every frame. Randomly selected spatio-temporal volumes of Force Flow are used to model the normal behavior of the crowd. We classify frames as normal and abnormal by using a bag of words approach. The regions of anomalies in the abnormal frames are localized using interaction forces. The experiments are conducted on a publicly available dataset from University of Minnesota for escape panic scenarios and a challenging dataset of crowd videos taken from the web. The experiments show that the proposed method captures the dynamics of the crowd behavior successfully. In addition, we have shown that the social force approach outperforms similar approaches based on pure optical flow.

1,585 citations

Journal ArticleDOI
TL;DR: This article summarizes the research on the positive effects of playing video games, focusing on four main domains: cognitive, motivational, emotional, and social, and proposes some candidate mechanisms by which playing videoGames may foster real-world psychosocial benefits.
Abstract: Video games are a ubiquitous part of almost all children's and adolescents' lives, with 97% playing for at least one hour per day in the United States. The vast majority of research by psychologists on the effects of "gaming" has been on its negative impact: the potential harm related to violence, addiction, and depression. We recognize the value of that research; however, we argue that a more balanced perspective is needed, one that considers not only the possible negative effects but also the benefits of playing these games. Considering these potential benefits is important, in part, because the nature of these games has changed dramatically in the last decade, becoming increasingly complex, diverse, realistic, and social in nature. A small but significant body of research has begun to emerge, mostly in the last five years, documenting these benefits. In this article, we summarize the research on the positive effects of playing video games, focusing on four main domains: cognitive, motivational, emotional, and social. By integrating insights from developmental, positive, and social psychology, as well as media psychology, we propose some candidate mechanisms by which playing video games may foster real-world psychosocial benefits. Our aim is to provide strong enough evidence and a theoretical rationale to inspire new programs of research on the largely unexplored mental health benefits of gaming. Finally, we end with a call to intervention researchers and practitioners to test the positive uses of video games, and we suggest several promising directions for doing so.

1,546 citations